Выбрать главу

Выводами о некоторых наиболее практически важных исследовательских работах, имеющих непосредственное отношение к объектам, о которых шла речь в начале главы, мне и хотелось бы закончить свою книгу.

Радиационная стойкость бетона. Вопрос этот долгое время оставался практически не изученным. Считалось, что для сохранности бетона защитных конструкций необходимо ограничивать интегральный поток нейтронов в бетоне величиной 1019 нейтр./см2. Такое условие приводило к существенному усложнению и удорожанию конструкции защиты. В. Б. Дубровский и Б. К. Пергаменщик совместно с сотрудниками Физико-энергетического института в 1963 г. начали экспериментальные работы по исследованию радиационных повреждений в бетоне.

Облучение образцов бетонов и цементных растворов проводилось в экспериментальных каналах и активной зоне реакторов БР-5 и 1-й атомной электростанции. Интегральные потоки нейтронов на образцы составляли от 1019 до 2·1021 нейтр./см2, температура, сопровождавшая облучение, достигала 300° C. Исследовались плотность, прочность, теплопроводность и другие характеристики.

Было обнаружено, что поведение бетона при облучении зависит главным образом от радиационных изменений в заполнителе, то есть именно заполнитель определяет радиационную стойкость бетона. Это позволило более направленно вести дальнейшие исследования.

Сегодня можно назвать бетоны, способные без заметных изменений воспринимать интегральный поток нейтронов 1—2·1021 нейтр./см2. К ним относятся бетоны на металлорудных заполнителях — хромитовой и гематитовой руде. Из обычных бетонов к наиболее радиационностойким относятся бетоны на известняке, базальте. Использование их возможно при дозе около 5·1020 нейтр./см2. Наконец, что очень важно, выделена группа малостойких бетонов с заполнителями из кварцевого песчаника, гранита, речного песка. Для них максимальная доза не должна превышать 1020 нейтр./см2.

На основании рекомендаций кафедры и при ее участии разработаны варианты защиты из радиационностойких бетонов для ряда новых реакторов, которые в ближайшие годы вступят в строй. Работы по указанной тематике продолжаются и сегодня. Изучаются вопросы о влиянии спектрального состава излучений на степень радиационных повреждений, о газовыделениях в бетонах при облучении, о радиационных напряжениях и деформациях фрагментов защиты при высоких интегральных потоках нейтронов.

Водород и защитные свойства бетона. Физики-атомщики постоянно выдвигали общий тезис, что чем больше водорода в бетоне, тем лучше из него биологическая защита. В результате появились составы специальных бетонов с повышенным содержанием водорода (практически — химически связанной воды) за счет использования гидратных заполнителей и цементов. Но применение указанных материалов, по существу, не имело конкретных технико-экономических обоснований. Аспирант кафедры строительства ядерных и специальных сооружений А. М. Туголуков провел комплексное расчетно-теоретическое и экспериментальное исследование влияния содержания воды в бетоне на толщину и стоимость биологической защиты.

Из бетонов разных составов с различным содержанием воды изготавливались защитные экраны, которые устанавливались в нише исследовательского реактора, где проводилось измерение распределения в экранах потоков быстрых, резонансных и тепловых нейтронов. Результаты экспериментов были довольно неожиданными: оказалось, что для стационарных ядерных реакторов значительное увеличение содержания воды уменьшает толщину защитного слоя бетона всего лишь на… 10%. В то время как стоимость затрат на введение воды в бетон возрастает значительно больше! То есть оказывается целесообразнее несколько увеличить толщину защиты из обычного бетона, чем повышать процент содержания воды.

Необоснованные требования к повышенному содержанию водорода (воды) в бетонной защите явились причиной того, что во всех известных защитах не допускало нагрев бетона выше 60° C. Хотя с точки зрения прочности и температурных напряжений обычный бетон выдерживает температуры до 250°—300° C, а жаростойкие бетоны — до 1000° C. Для того чтобы исключить разогрев бетонной защиты сверх 60° C за счет поглощения энергии излучения, во всех известных ядерных реакторах перед бетоном возводилась сложная и дорогостоящая тепловая защита из дефицитных материалов: нержавеющей стали, графита, металлических баков, наполненных водой и т. п. Все это помимо удорожания приводило к усложнению конструкции, увеличению габаритов и другим технологическим сложностям.