Рис. 22.6. Иоганн Листинг
Не понятно, почему он так и не занял достойного места в истории. У него прекрасный академический послужной список. Он защитил докторскую диссертацию под руководством Гаусса и оставался в ближнем кругу своего учителя до самой его смерти (Листинг присутствовал на похоронах). В течение восьми лет он жил по соседству с Риманом. (Удивительно, что нет никаких свидетельств совместной работы или даже значимых бесед между ними, хотя у них так много общего. Высказывалось предположение, что Листинг, возможно, опасался заразиться туберкулезом, терзавшим семью Римана200.) Листинг внес важный вклад и в другие области науки, например оптику глаза. Помимо топологии, он ввел в оборот еще несколько терминов, сохранившихся до наших дней, например «микрон» — миллионная доля метра.
Быть может, неизвестностью он обязан личным качествам. Будучи общительным и добрым человеком, он страдал маниакально-депрессивным психозом, постоянно испытывал финансовые затруднения из-за больших долгов, а его жена часто вступала в конфликт с законом. Быть может, из-за своего беспокойного духа он на несколько лет отдалялся от математики и принимал неудачные карьерные решения, а быть может, все объясняется отказом играть в политические игры в академии. Возможно, проблема — в его способе изложение математики. В его работах всегда очень много внимания уделяется деталям, за которыми трудно разглядеть важные и глубокие открытия.
Он написал две монографии по топологии, одну в 1847, другую в 1861 году201. Первая, уже упоминавшаяся «Топология», состояла в основном из его размышлений на топологические темы. Вторая, с длинным названием «Der Census räumllcher Complexe oder Verallgemelnerung des Euler'-schen Satzes von den Polyedern» («Исследование пространственных комплексов, или Обобщение теоремы Эйлера на многогранники»), содержала его обобщения формулы Эйлера на невыпуклые трехмерные тела. В 1884 году П. Г. Тэйт сетовал, что труды Листинга по топологии не были извлечены из незаслуженной безвестности и не опубликованы на английском, особенно когда так много работ, по сравнению с ними никчемных или, по крайней мере, не столь полезных, удостоилось этой чести202.
В «Исследовании» Листинг отказался от взгляда на многогранники как на жесткие фигуры, а подверг проблему топологическому рассмотрению. Листинг подсчитывал количество вершин, ребер, граней и (трехмерных) пространственных граней, но допускал, что эти характеристики могут иметь нетривиальную топологию, или (в его терминологии) циклозис. Например, он считал окружность ребром, а сферу гранью, но при подсчете модифицировал итог, принимая во внимание их топологию. цилиндр он считал гранью, но, поскольку тот содержит нетривиальную петлю, вычитал единицу. Таким образом, если A, B, C, D — соответственно число вершин, ребер, граней и пространственных граней, очищенных от циклозиса, то A — B + C — D = 0.
Чтобы дать представление о том, как устроено разбиение Листинга, применим его к сплошному тору — это разбиение показано на рис. 22.7. В нем нет вершин, одно круговое ребро, две грани (в форме цилиндра и в форме диска) и две пространственные грани (внутренность цилиндра и окружающее пространство, которое он тоже учитывал в подсчете). Поскольку в этом разбиении нет вершин, A = 0. Ребро одно, но оно содержит замкнутую петлю, так что B = 1–1 = 0. Грани две, но поскольку цилиндрическая грань содержит замкнутую петлю вдоль окружности, то C уменьшается на единицу. Таким образом, C = 2–1 = 1. Наконец, пространственных грани две, но поскольку внешнее пространство содержит нетривиальную петлю, имеем D = 2–1 = 1. В полном согласии с формулой Листинга: A — B + C — D = 0–0 + 1–1 = 0.
Рис. 22.7. Разбиение сплошного тора
Подход Листинга к задаче был удивительно остроумным и проницательным. Это была первая попытка рассмотреть трехмерную формулу Эйлера с чисто топологической точки зрения. Однако она была далека от совершенства. Уж как минимум способ вычисления A, B, C и D был путаным. Листинг отказался от изящной простоты вершин, ребер и граней Эйлера. Вместо этого мы должны понимать топологию каждого элемента разбиения Листинга.
Следующий крупный вклад в теорию n-мерной топологии был сделан Риманом и итальянским математиком Энрико Бетти (1823–1892). Чтобы понять, в чем он состоял, нам придется вернуться к изучению поверхностей, предпринятому Риманом.
В своей докторской диссертации 1851 года Риман представил топологический инвариант — число дырок в ориентируемой поверхности. Он назвал его числом связности поверхности203. Поверхность (с краем или без края) имеет число связности n, или является n-связной[15], если n — наибольшее число разрезов, при котором поверхность еще не распадается на части[16]. Если поверхность имеет край, то разрезы должны начинаться и заканчиваться на крае. Если же у поверхности нет края, то первый разрез должен начинаться и заканчиваться в одной и той же точке (после чего у поверхности появится край).
16
На самом деле число связности Римана было на единицу больше этого значения, но мы уменьшили его, чтобы сохранить совместимость с современной нотацией.