Выбрать главу

Илл. 2.1 [а]

Теперь наложим на эту картинку нейтральный градиент светлот, который в крайних положениях имеет значения 0 (черная точка) и 100 (белая точка) уровней светлоты L (Lightness) в координатах Lab (илл. 2.1 [б]).

Илл. 2.1 [б]

При наложении используем режим Luminosity. Таким образом, от первой картинки мы возьмем цветовую составляющую, а от второй – светлотную. В результате получим картинку, демонстрирующую восприятие чистых (предельно насыщенных) цветов в зависимости от того, насколько они темные или светлые (илл. 2.2).

Илл. 2.2

В той или иной степени эта иллюстрация условна, так как условны и способ ее получения, и чистота цвета в выбранной цветовой модели, и сама система компьютерного представления цвета. Если бы мы использовали другие цветовые модели или попробовали изобразить эту взаимосвязь с помощью красок на холсте, мы могли получить несколько другую картинку. Хотя она будет похожа на эту, т. к. в конечном итоге иллюстрирует особенности восприятия человека. Проанализируем эту иллюстрацию.

Первое, что бросается в глаза: каждый цвет достигает своего максимального насыщения при определенном уровне светлоты. Например, желтый – в относительно светлых областях, а синий, наоборот, – в очень темных.

В своей книге «Закономерность изменяемости цветовых сочетаний», впервые изданной в 1932 году, художник М. В. Матюшин описывает аналогичные наблюдения следующими словами:

Красный цвет, который днем в 10 раз светлее синего, в сумерки оказывается в 16 раз его темнее.

Второе очевидное наблюдение касается очень темных и очень светлых цветов, которые в пределе стремятся соответственно к черному и белому. Очень светлые цвета, кроме желтого и соседних с ним, воспринимаются выбеленными. Чем светлее цвет, тем труднее отличить его от других цветов. При максимальной светлоте все цвета превращаются в белый. Слишком темные цвета, кроме синего и соседних с ним, также слабо различимы между собой, а при уровнях светлот, близких к нулевой, превращаются в черный.

Если отталкиваться от любого максимально насыщенного цвета, то значительное его осветление или затемнение неизбежно влечет за собой снижение насыщенности. Вот, что пишет об этом В. Железняков:

Будучи художником-практиком, Манселл учел, что цвета и тем более реальные краски, для систематизации которых он и придумывал свое цветовое тело, не могут быть одинаковой светлоты при максимальной насыщенности.

Эту взаимосвязь хорошо иллюстрируют объемные модели цветовых пространств, т. к. они в той или иной степени отражают особенности восприятия человека. Мы можем рассмотреть любую из них, например sRGB. Объемная модель этого цветового пространства, как и многие другие, по форме примерно соответствует цветовому телу человека, хотя и меньше его.

Илл. 2.3. 3D-модель цветового пространства sRGB в координатах Lab

На илл. 2.3 представлена цветовая 3D-модель sRGB в координатах Lab. Для того чтобы лучше понять особенности восприятия человека, заглянем внутрь этой замысловатой фигуры, как бы вырезав из нее четвертинку аналогично тому, как разрезают торт и вынимают из него кусок (илл. 2. 4).

Илл. 2.4

Центральная вертикальная ось представляет собой ось светлоты (L, Lightness), внизу которой находится черная точка (L=0), а вверху – белая точка (L=100). Все цвета, лежащие на этой оси, являются ахроматическими, то есть нейтрально-серыми.

Хроматическую (то есть собственно цветную) составляющую цвет получает только в том случае, когда отдаляется от центральной оси на некоторое расстояние. Причем, чем больше это расстояние, тем выше насыщенность цвета (илл. 2.5).

Илл. 2.5

Например, видно, что синий цвет максимально насыщен, то есть удален от аналогичного по светлоте монохромного (серого) оттенка, при достаточно низком уровне светлоты (илл. 2.6).