Выбрать главу

Мы приводим предисловие к первому изданию «Начал», а также введение и правила философствования, данные в третьей части этого труда. С латинского «Начала» были переведены на русский в 1915 г. академиком А. Н. Крыловым; мы сохранили часть его примечаний к этому известному переводу. Мы также приводим краткое предисловие Ньютона к «Оптике» в переводе академика С. И. Вавилова.

МАТЕМАТИЧЕСКИЕ НАЧАЛА НАТУРАЛЬНОЙ ФИЛОСОФИИ
Предисловие

Так как древние, по словам Паппуса, придавали большое значение механике при изучении природы, то новейшие авторы, отбросив субстанции и скрытые свойства, стараются подчинить явления природы законам математики.

В этом сочинении имеется в виду тщательное развитие приложений математики к физике [7].

Древние рассматривали механику двояко: как рациональную (умозрительную), развиваемую точными доказательствами, и как практическую. К практической механике относятся все ремесла и производства, именуемые механическими, от которых получила свое название и самая механика.

Так как ремесленники довольствуются в работе лишь малой степенью точности, то образовалось мнение, что механика тем отличается от геометрии, что все вполне точное принадлежит к геометрии, менее точное относится к механике. Но погрешности заключаются не в самом ремесле или искусстве, а принадлежат исполнителю работы: кто работает с меньшей точностью, тот — худший механик, и если бы кто-нибудь смог исполнять изделия с совершеннейшей точностью, тот был бы наилучшим из всех механиков.

Однако самое проведение прямых линий и кругов, служащее основанием геометрии, в сущности относится к механике. Геометрия не учит тому, как проводить эти линии, но предполагает (постулирует) выполнимость этих построений. Предполагается также, что приступающий к изучению геометрии уже ранее научился точно чертить круги и прямые линии; в геометрии показывается лишь, каким образом при помощи проведения этих линий решаются разные вопросы и задачи. Само по себе черчение прямой и круга составляет также задачу, но только не геометрическую. Решение этой задачи заимствуется из механики, геометрия учит лишь пользованию этими решениями. Геометрия за то и прославляется, что, заимствовав извне столь мало основных положений, она столь многого достигает.

Итак, геометрия основывается па механической практике и есть не что иное, как та часть общей механики, в которой излагается и доказывается искусство точного измерения. Но так как в ремеслах и производствах приходится по большей части иметь дело с движением тел, то обыкновенно все, касающееся лишь величины, относят к геометрии, все же, касающееся движения,— к механике.

В этом смысле рациональная механика есть учение о движениях, производимых какими бы то ни было силами, и о силах, требуемых для производства каких бы то ни было движений, точно изложенное и доказанное.

Древними эта часть механики была разработана лишь в виде учения о пяти машинах,  применяемых в ремеслах; при этом даже тяжесть (так как это не есть усилие, производимое руками) рассматривалась ими не как сила, а лишь как грузы, движимые сказанными машинами. Мы же, рассуждая не о ремеслах, а об учении о природе и, следовательно, не об усилиях, производимых руками, а о силах природы, будем заниматься главным образом тем, что относится к тяжести, легкости, силе упругости, сопротивлению жидкостей и к тому подобным притягательным или напирающим силам. Поэтому и сочинение это нами предлагается как математические основания физики. Вся трудность физики,, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления. Для этой цели предназначены общие предложения, изложенные в книгах первой и второй. В третьей же книге mi даем пример вышеупомянутого приложения, объясняя систему мира, ибо здесь из небесных явлений, при помощи предложений, доказанных в предыдущих книгах, математически выводятся силы тяготения тел к Солнцу и отдельным планетам. Затем по этим силам, также при помощи математических предложений, выводятся движения планет, комет, Луны и моря. Было бы желательно вывести из начал механики и остальные явления природы,, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все эти явления обусловливаются некоторыми силами, с которыми частицы тел, вследствие причин покуда неизвестных, пли стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются друг от друга. Так как эти силы неизвестны, то до сих пор попытки философов объяснить явления природы остались бесплодными. Я надеюсь, однако, что или этому способу рассуждения, или другому, более правильному, изложенные здесь основания доставят некоторое-освещение.

вернуться

7

При современной терминологии заглавие сочинения Ньютона: «Philosophial Natu-raiis Principia Mathematica» наиболее точно передается словами: «Математические основания физики». Термин «Натуральная или естественная философия» — «Natural Philosophy» удержался и до сих пор в английской литературе; так, например, озаглавлено знаменитое сочинение В. Томсона и Тэйта (см. стр. 185— Ред.) — Прим. А. Я. Крылова.