Для определения движения свободной точки в пространстве под действием ускоряющих сил обычно используют методы, связанные с интегрированием трех обыкновенных дифференциальных уравнений второго порядка. Случай системы многих свободных точек, отталкивающихся или притягивающихся друг к другу, связан уже с интегрированием системы таких уравнений, число которых в три раза больше, чем число взаимодействующих точек, если мы не уменьшили на единицу это число, рассматривая только относительное движение. Так, в солнечной системе, когда мы рассматриваем взаимное притяжение Солнца и десяти известных нам планет, то их движение вблизи Солнца сводится обычными методами к интегрированию системы тридцати обыкновенных дифференциальных уравнений второго порядка, связывающих координаты и время. Если же мы применим преобразование Лагранжа, то придем к интегрированию шестидесяти обыкновенных дифференциальных уравнений первого порядка для времени и элементов эллиптических орбит. Путем их интегрирования мы найдем тридцать изменяющихся координат или шестьдесят изменяющихся элементов как функций времени.
В методе, который предложен в данном сочинении, эта задача сводится к отысканию и дифференцированию одной функции, удовлетворяющей двум дифференциальным уравнениям в частных производных первого порядка и второй степени. Любую другую задачу динамики, касающуюся движения произвольной системы, какой бы сложной она ни была и из скольких бы притягивающихся или отталкивающихся точек она ни состояла (даже если мы предположим, что эти точки ограничены любыми условиями связи, совместимыми с законом живой силы), мы можем ее свести подобным образом к изучению одной главной функции. Вид этой функции определяется и характеризуется свойствами системы, и ее нахождение связано с парой дифференциальных уравнений в частных производных первого порядка, а также и несколькими простыми соображениями. Таким образом, трудность, по крайней мере, переносится с интегрирования многих уравнений одного вида на интегрирование двух уравнений другого вида. Если при этом даже и не получается какое-либо практическое упрощение, то эта возможность дает некоторое интеллектуальное удовлетворение в сведении наиболее сложных задач и, вероятно, всех задач, касающихся сил и движения тел, путем введения одной характеристической функции[20], раскрытию одного главного соотношения.
Данное сочинение не претендует на полноту рассмотрения этого обширного предмета — задачи, которая потребует трудов многих лет и многих умов. Данное сочинение только предлагает эту мысль и указывает этот путь другим. Тем самым этот метод может быть использован для самых разнообразных исследований по динамике. Здесь же он применяется только для орбит и возмущений системы с произвольным законом притяжения или отталкивания с одной главной массой пли центром главной энергии. Это оказывается достаточным для того, чтобы в этом исследовании разъяснить существо принципа. Следует заметить, что этот динамический принцип есть лишь другое выражение той идеи, которая уже была приложена к оптике в «Теории систем лучей». Тогда же при опубликовании этой теории было заявлено о намерении автора применить ее и к движению систем тел. Сама же эта идея и способ ее расчета, которые приложены к оптике и динамике, по-видимому, не ограничены только этими двумя науками, но могут иметь и другие приложения. То особое сочетание вариационного исчисления и частного дифференцирования, которые используются для определения важного класса интегралов, может составить при его дальнейшем развитии в будущих трудах математиков отдельную область анализа.
20
Лагранж, а за ним и Лаплас и другие использовали одну функцию для того, чтобы выразить различные силы в системе и таким путем получить достаточно изящным образом дифференциальные уравнения движения. Таким образом удалось существенно упростить постановку задачи в динамике. Но решение этой задачи пли нахождение самих движении или интегралов движения зависит, как это видно из данного сочинения, от совершенно другой и до сих пор неизвестной функции.