Выбрать главу

Технологи и материаловеды всегда завидовали изощренной изобретательности природы, удивительно сложные и эффективные конструкции которой редко удается повторить. Даже простейшие одноклеточные диатомовые водоросли размером в несколько микрон имеют замысловатый кварцевый наноскелет, поражающий разнообразием форм. И такие конструкции пока недоступны современным нанотехнологам.

Но теперь природные образования из диоксида кремния можно преобразовать в наноструктуры из чистого кремния, пригодного для использования в электронике. Обычно для восстановления кремния применяют углерод и температуры порядка двух тысяч градусов, которые разрушают хрупкие наноструктуры. Вместо углерода авторы использовали газообразный магний при щадящей температуре 650 градусов Цельсия. В результате получается композит из чистого кремния и оксида магния, последний затем можно удалить травлением в соляной кислоте. В процессе восстановления полностью сохраняется форма исходного скелета водоросли, и дополнительно возникают поры размером несколько десятков ангстрем, остающиеся при удалении оксида магния.

Для примера ученые присоединили пару платиновых электродов к кремниевому скелету водоросли цилиндрической формы и получили великолепный сенсор для обнаружения окиси азота. Проникая в поры конструкции и взаимодействуя с кремнием, этот вредный газ сильно изменяет ее проводимость, которую нетрудно измерить. Простота и чувствительность такого сенсора не знает себе равных. Чрезвычайно развитая поверхность "полупроводниковых скелетов" сулит им массу разнообразных применений. Изготовленные на их основе аккумуляторы должны иметь большую емкость и малое время заряда. Кремний в подобных наноструктурах заметно меняет свои оптические свойства и начинает эффективно излучать при возбуждении лазерным светом определенных длин волн. Это может пригодиться в фотонике, биологии, медицине и во многих других областях.

Диатомовые водоросли - благодатный материал для генной инженерии. Поэтому вывести водоросль с нужным скелетом, если в природе вдруг не нашлось готового, не составит большого труда. Так что вполне возможно, что технологический цикл на наноэлектронных заводах недалекого будущего начнется в аквариумах. ГА

Последний бозон

Группа ученых из США и Тайваня предположила, что в экспериментах на ускорителе Лаборатории Ферми уже наблюдался легчайший из семи бозонов Хиггса, чье существование предсказывает одна из суперсимметричных теорий. Если это подтвердится, то от продержавшейся более тридцати лет Стандартной модели физики элементарных частиц вскоре придется отказаться.

Из всего зоопарка элементарных частиц, описываемых Стандартной моделью, только одна - бозон Хиггса - до сих пор не обнаружена. Слишком велика его масса, в единицах энергии оцениваемая интервалом от ста до тысячи гигаэлектрон-вольт (ГэВ). Такие энергии были пока недоступны ни одному из земных ускорителей.

Но на большом адронном коллайдере, который должен начать работу в ноябре этого года в ЦЕРНЕ (неподалеку от Женевы), бозон Хиггса уже может быть получен. Без бозона Хиггса нельзя объяснить возникновение масс всех остальных элементарных частиц Стандартной модели, и если с ним что-то не заладится, всю модель придется серьезно пересматривать.

Так что пока суд да дело, теоретики готовятся к худшему. И в одной из уже развитых альтернативных теорий (так называемой "следующей за минимальной суперсимметричной стандартной моделью"), которая лишь удваивает число элементарных частиц, имеется уже не один, а целых семь бозонов Хиггса. Самый легкий из них может иметь "смешную" массу около 200 МэВ. Его, возможно, и наблюдали в HyperCP-экспериментах на ускорителе в Лаборатории Ферми.

В этих опытах, специально поставленных для поиска отличий между веществом и антивеществом, пучок протонов бомбардировал мишень. И среди миллионов зафиксированных за несколько лет реакций с элементарными частицами случилось всего три крайне редких необычных события. В них так называемая сигма плюс частица распалась на протон и пару мюон-антимюон. Такая реакция свидетельствует в пользу существования псевдоскалярного бозона Хиггса с массой 214 МэВ и пока не имеет других приемлемых объяснений.

Впрочем, трех таких событий слишком мало, чтобы считать эксперименты надежными. Да и гипотеза подобного рода уже не первая. Ранее теоретики объяснили один из необычных пиков на энергетических спектрах, полученных в той же серии экспериментов, с помощью другой суперсимметричной теории с пятью бозонами Хиггса. Так что, пожалуй, стоит подождать вестей из CERN и не суетиться раньше времени. Лучше уж пусть останется Стандартная модель и отыщется один тяжелый бозон Хиггса, чем появится множество легких бозонов и потребуется более сложная модель, их описывающая. ГА