Выбрать главу

Интересные компьютерные расчеты выполнили ученые в Техасском университете в Браунсвилле. Новый алгоритм позволил вычислить гравитационные волны, излучаемые при слиянии пары массивных черных дыр.

Несмотря на значительные усилия, уже затраченные на поиск предсказанных еще в 1916 году Общей теорией относительности Эйнштейна гравитационных волн, они до сих пор никем непосредственно не обнаружены. Даже система из трех гигантских интерферометров, построенных в США в рамках проекта LIGO (Laser Interferometer Gravitational-Wave Observatory) и приступивших к работе еще в 2001 году, не смогла их выделить на фоне шумов, создаваемых вибрациями нашей планеты. А размеры и точность этих устройств впечатляют. Длина плеча лазерного интерферометра, чутко следящего за малейшими отклонениями пробной массы, достигает четырех километров.

Но дело не только в шумах. Самые мощные гравитационные волны должны излучаться при гигантских катастрофах вроде взрывов сверхновых, столкновении и слиянии звезд, пульсаров или черных дыр. А это события редкие. И важно знать, какая волна от них побежит, чтобы легче было выделить ее из неизбежного шума. Но уравнения общей теории относительности Гильберта-Эйнштейна нелинейны, черные дыры и их гравитационные волны сильно искривляют пространство-время, возникают различные сингулярности и неустойчивости, затрудняющие вычисления. Поэтому хотя расчеты гравитационных волн и не требуют всей мощи современных суперкомпьютеров, создать для них корректный алгоритм весьма непростая задача. Тем не менее это удалось, и теперь ученые располагают мощным инструментом для предсказания колебаний кривизны пространства, которые должны возникать при слиянии черных дыр (на рисунках — результаты визуализации расчетов).

Возможно, подобные катаклизмы удастся зарегистрировать с помощью космической антенны для гравитационных волн LISA, запуск которой совместными усилиями NASA и Европейского космического агентства запланирован на 2015 год. Эта антенна будет состоять из трех вращающихся вокруг Солнца спутников на расстоянии четырехсот диаметров Земли друг от друга в вершинах равностороннего треугольника. Лазерные интерферометры будут следить за отклонениями пробных масс внутри спутников. Согласно расчетам, эта система будет в сто раз чувствительнее наземных и позволит зарегистрировать гравитационные волны самых низких частот. — Г.А.

И правда — ОН

В начале апреля самые разные слои общества взбудоражил пресс-релиз британских астрономов, работающих с информацией, поступающей от сети радиотелескопов MERLIN. В поле зрения этой системы попало облако метилового спирта, расположившееся в области Млечного Пути, химически созвучно именуемой W3(OH).

Кто-то из прочитавших новостные заметки в Интернете удивился размеру облака (463 миллиарда километров), кто-то — выхватил из контекста слово «спирт» и отправился строчить хохмы в «комменты». Что тут скажешь? Во-первых, для космического облака такие размеры неудивительны, а что касается спирта, то метанол для человека гастрономического интереса представлять не должен. Более того, облаков, содержащих пары метанола известно много, и ничего сверхнеожиданного британцы не открыли. Они сознательно искали подобный объект в этом месте, ориентируясь на зафиксированные мазерные вспышки и опираясь на уже существующие теории мазерного излучения в межзвездной среде. Мазеры — это аналоги лазеров, только излучают они в радиодиапазоне, а необходимым условием возникновения эффекта служит как раз наличие большого молекулярного облака. С тем же успехом в данном месте могли быть обнаружены скопления других органических веществ. Радиоизображения мазеров OH, о которых тоже сообщили британцы, еще 1999-м году были получены нашими соотечественниками, а объектом тогда послужил все тот же регион W3(OH).

Поэтому российские астрономы с интересом посмотрели на отчет зарубежных коллег, но удивляться и шуметь на этот счет не стали.

А англичанам в следующий раз, возможно, стоит учесть, что среди прочих углеводородов в космосе и этанол встречается в изобилии. Вот это уже пища… для размышлений. — А.Б.

Прибыл на второй путь

Возможно, что в ближнем космосе вскоре будет не продохнуть не только в прямом, но и в переносном смысле. Бог с ними, с туристами! Если мыслить масштабами всей Солнечной системы, то вырисовывается весьма радужная картина. Судите сами: пять планет из девяти изучаются космическими аппаратами, еще к двум планетам зонды летят, да и Нептун уже взят на карандаш. Дайте срок, в космосе появятся светофоры, а в публичных местах запестрят расписания рейсов.