Выбрать главу

У звезд вряд ли есть дружеская или родственная привязанность, и от того, что земляне отыщут Солнцу сестричку, ему теплее не станет. А вот астрономам это поможет проникнуть в тайны происхождения не только Солнца, но и звездной системы в целом. Возможно, поиск будет начат среди ближайших звезд, однако не исключено, что со временем блудные соседи обнаружат себя и в совсем другой части Галактики: за пять миллиардов лет много утекло звездного света. АБ

Инопланетяне среди нас

Грибы едят почти все – от картона до асбеста и от пластика до керосина. Но еще никому не приходило в голову, что универсальные едоки способны питаться даже некоторыми видами радиации. И, тем не менее, это именно так, как утверждает Екатерина Дадахова (Ekaterina Dadachova) со своими коллегами из Медицинского колледжа имени Альберта Эйнштейна в Нью-Йорке.

Исследователи установили, что некоторые грибы, содержащие молекулы пигмента меланина (он также присутствует в человеческой коже), способны усваивать энергию радиации и использовать ее для ускорения своего роста. На открытие натолкнул удивительно бурный рост богатых меланином «черных грибов» на руинах Чернобыльской атомной станции. Ученые проверили, как влияет на рост некоторых грибов бета-излучение изотопа цезия-137, который образуется при распаде урана и плутония. Было установлено, что все три исследуемых вида Cladosporium sphaerospermum, Cryptococcus neoformans и Wangiella dermatitidis в присутствии изотопа растут быстрее. Причем за это ускорение отвечает именно меланин, поскольку при его удалении скорость роста при облучении уже не менялась. C помощью технологии электронно-спинового резонанса ученые наблюдали изменения в электронных свойствах меланина в ответ на радиационное облучение. Екатерина Дадахова считает, что меланин преобразует радиоактивное излучение в химическую энергию подобно тому, как хлорофилл преобразует энергию света при фотосинтезе.

Далеко не все специалисты согласны с интерпретацией авторов. Если они правы и радиация действительно может служить источником энергии для живых организмов, то эта работа по своему значению сопоставима с открытием фотосинтеза и несет массу удивительнейших следствий. Например, описанный механизм дает возможность для жизни существовать в недрах радиоактивных планет, где есть какие-то возможности для перемещения веществ. Или даже вообще позволяет «оторвать» жизнь от звезд. Известная нам жизнь нуждается в свете и как источнике тепла, и как источнике энергии для поддержания подходящих температур. Неужели радиация может дать и то, и другое? Это намек на существование принципиально иной жизни на химической основе, совместимой с основой земной, фотосинтетической жизни. Однако ускоренный рост грибов можно объяснить и простым повышением интенсивности метаболизма или неспецифической активацией подобно тому, как радоновые ванны с бета-излучением увеличивают жизненный тонус. И только дополнительные исследования помогут расставить все точки над i.

Сразу возникает вопрос, способен ли меланин человеческой кожи или кожи других животных использовать радиацию? Пока этому нет никаких подтверждений, и, во всяком случае, выработка такой энергии будет крайне мала. Но если грибы действительно умеют усваивать радиоактивное излучение, то это повышает шансы найти такие же способности и у растений или животных. ГА

Движение по спирали

Исследователи из университетов Калифорнии (Сан-Диего) и Южной Каролины создали углеродные нанотрубки и нановолокна спиральной формы, напоминающие пружины. Оказалось, что в наномасштабе переход от обычной прямолинейной формы к спиралевидной существенно сказывается на параметрах электропроводности нанотрубок. Манипулируя этими различиями, ученые надеются создать компоненты для наноэлектроники. В частности, спиральные нанотрубки могут стать основой логических элементов и накопителей данных.

Как говорят разработчики, будет ли нанотрубка спиралевидной или прямолинейной, определяется наличием лишь единичных атомов углерода, расположенных в критически важных для этого местах нанотрубки, которые получают методом осаждения из газовой фазы. Форма трубок и их «качество» контролируются с помощью электронной микроскопии. Работа группы калифорнийских ученых увенчалась открытием фундаментальных основ, определяющих форму трубок, и благоприятных условий для получения нелинейной формы. Зная ключевые факторы роста спиралевидных трубок, можно точно контролировать их электрические свойства. Но пока до реализации конкретных практически значимых проектов на основе наноспиралей еще далеко, и исследователи занимаются изучением способов объединения трубок в функциональные устройства.