Выбрать главу

Жгучий интерес к КК был стимулирован открытием в середине 1990-х годов нескольких алгоритмов, позволяющих (тоже теоретически; в области КК пока что почти все делается теоретически) за разумное время решать на таком устройстве безнадежные для классического компьютера задачи. Питер Шор (Peter Shor) придумал быстрый квантовый алгоритм для важнейших в современной криптографии задач факторизации и дискретного логарифмирования. Лов Гровер (Lov Grover) доказал совсем уж контринтуитивный результат – КК может найти запись в массиве из N записей за N попыток.

Однако сегодня наибольший интерес ученых вызывает самая естественная сфера потенциального применения КК, точное моделирование квантовых систем – атомов, молекул, их сложных взаимодействий в химических реакциях и живых организмах.

Каковы же требования к точности?

Юрий Богданов: Для задач квантового компьютинга нужна точность в четыре-пять девяток (99,999%). Этого, с учетом алгоритмов (весьма ресурсоемкого) исправления ошибок, достаточно для реализации сложных квантовых вычислений. В наших работах с группой Кулика (они опубликованы в ведущих международных и российских научных журналах) мы получаем точность 99,98%. Сегодня это лучший результат в мире. Нет сомнения, что на более качественной аппаратуре наши методы позволят достичь большей точности.

Но работа с кубитами не единственная наша задача. Мы преследуем прежде всего фундаментальные цели – продемонстрировать конструктивный подход к квантовой механике, показать, что пси-функция – реальный объект, который можно измерить (просто для этого нужно использовать ансамбль представителей).

Второе экспериментальное направление, развиваемое учеными ФТИАН, – кубиты на основе цепочек ядерных спинов.

Владимир Лукичёв: Используя современную технологию создания структур в полупроводнике размером в несколько нанометров, мы можем имплантировать в узкий канал в кремнии линейную цепочку ионов фосфора. Одна такая цепочка содержит от десяти тысяч до миллиона атомов (ядерный спин очень мал, и чтобы управлять им и надежно его детектировать, надо набрать достаточно большое число частиц). Это один логический кубит.

Эксперименты с такими кубитами запланированы на следующее лето. Сейчас мы строим «чистую комнату», в которую будет установлен электронный литограф (он стоит 1,2 млн. евро, финансирование идет из госбюджета, по целевым программам). Это оборудование позволяет создавать структуры по 32-нанометровой технологии, их мы будем использовать для экспериментов с квантовыми устройствами. Первая задача – создать хотя бы пару кубитов и научиться ими управлять.

Еще один экспериментальный проект связан с высокотемпературными сверхпроводниками (ВТСП).

Владимир Лукичёв: В нашем институте ведется и проект по созданию так называемого р-контакта. В этом случае кубит создается на границе ВТСП двух разных типов (SDS-переход). Потенциальная энергия такого перехода имеет два минимума, при значениях фазовой переменной 0 и р. Они соответствуют двум базовым состояниям кубита.

Часть экспериментов по этому направлению мы выполняем совместно с одним из университетов Дании, а также с Институтом радиотехники и электроники РАН.

Четвертое направление экспериментальных исследований – кубиты на ионных ловушках – находится в стадии планирования. По этой технологии в мире уже получены сложные квантовые состояния десятков ионов меди или магния. Для такой работы нужна серьезная лазерная техника, и сейчас налаживается сотрудничество с Каширским лазерным центром.

В лаборатории есть и теоретический проект – КК на квантовых точках с оптическим управлением.

Александр Цуканов: Квантовые точки называют еще искусственными атомами. Это макрообъекты, разделенные полупроводником с параметрами, позволяющими удерживать в каждой точке отдельные электроны. Поэтому квантовые точки можно «заселять» определенным количеством электронов. Они допускают кодировку квантовой информации, устойчивую к некоторым типам шумов (а это главная проблема при конструировании кубитов). Квантовая информация, закодированная таким способом, может храниться долго – по квантовым меркам, конечно: от десятков наносекунд до микросекунд. Пару квантовых точек можно трактовать как кубит: электрон в левой точке – ноль, в правой – единица.

Сейчас в мире, в том числе и в России, идет много проектов по квантовым точкам, считается, что это одно из самых перспективных направлений, в частности потому, что квантовые точки сравнительно легко изготовить, причем можно контролировать их форму, размеры и состав.

Впрочем, как заметил Юрий Богданов, никто пока не может сказать, на какую из технологий кубитового харда надо делать ставку. ФТИАН стремится следовать принципу «пусть расцветают сто цветов» – но в применении к кубитам ни одна организация на планете не может воплотить этот принцип в полной мере. В институте отдают предпочтение твердотельным технологиям, но и они так разнообразны, что охватить все невозможно.

Философия

Еженедельный семинар лаборатории Валиева его участники сравнивают с гоголевской «Шинелью» – он объединяет почти всех ученых, занимающихся КК в России. Институт сотрудничает с коллегами из стран СНГ (Белоруссия, Армения), есть совместные проекты с университетами Дании и Франции, с Академией наук Словакии. Но все это чисто научные связи. Исследования по квантовому харду и софту пока не могут приносить денег непосредственно из промышленности. Институт зарабатывает деньги на других вещах – плазменных технологиях, например. Квантовый компьютинг – задел на будущее, а главное – возможность заниматься действительно фундаментальными проблемами.

Юрий Ожигов: Эксперименты по КК – это моя точка зрения – передний край физики. Всей физики. Здесь проверяются фундаментальные основы квантовой теории многочастичных систем. Чем сложнее состояния, чем больше частиц, тем быстрее наступает декогерентность – разрушение квантового состояния, в котором только и может работать КК. А декогерентность сводится к коллапсу волновой функции – это некий артефакт квантовой физики. Он лежит, строго говоря, за пределами квантовой теории в ее нынешнем варианте. И здесь возможны любые фантазии.

Эксперименты с разными технологиями КК как раз и проверяют те механизмы, которые есть в формализме квантовой механики. Но сам этот формализм уже не допускает введения новых механизмов. То есть все подобные проблемы уходят куда-то вдаль…