Выбрать главу

Комментируя эти данные, Петер Тодд указывает на то, что результаты, полученные его группой, очень хорошо согласуются с выводами других исследователей, которые изучали поведение… млекопитающих и, в частности, приматов. Согласно эволюционной теории, разработанной в психологии, для выживания вида его представители стараются выбирать половых партнеров исходя из их жизнеспособности. О ней прежде всего говорит внешняя привлекательность самок, свидетельствующая об их физическом здоровье и способности произвести на свет здоровое потомство, а у самцов – высокий статус в группе сородичей, говорящий об их возможностях это потомство сохранить. Получается, что, несмотря на ту пропасть, которая отделяет человека от его далеких предков, он бессознательно продолжает использовать те же алгоритмы выживания вида. И хотя Тодд и его коллеги отмечают, что при более близком знакомстве у людей на первый план все же выходят общность интересов и ценностей, особенности характера и другие чисто человеческие факторы, тем не менее первое впечатление зачастую определяет, есть ли будущее у этих отношений или они окончатся после первого же свидания. АК

Хвост кота Шредингера

С любопытным предложением выступили физики-теоретики из Тель-Авивского университета. Согласно их расчетам, уже в ближайшие годы с помощью наномеханического осциллятора можно будет экспериментально проследить за загадочным переходом между квантовым и классическим миром.

Еще отцы-основатели квантовой механики понимали, что далеко не все гладко в самых основах их теоретических построений, которые вот уже скоро сто лет как успешно описывают все технически реализуемые эксперименты с микрообъектами. Эти проблемы еще в те времена были сформулированы в форме парадоксов, самый известных из которых, пожалуй, парадокс о коте Шредингера. Никто не наблюдал котов, находящихся в состоянии квантовой суперпозиции состояний ни жив ни мертв, хотя с точки зрения квантовой теории такое возможно. И с тех пор эти темные места квантовой теории не стали яснее. То есть количество различных точек зрения и хитроумных теоретических построений, разумеется, значительно увеличилось, но от этого легче не стало. Так толком и не ясно, каким образом по мере увеличения своей массы или числа частиц объект перестает вести себя по квантовым законам и начинает подчиняться классической теории.

Многие физики считают, что за переход от квантового к классическому поведению ответственно неизбежное и постоянное взаимодействие объектов со своим окружением, что приводит к так называемому коллапсу волновых функций, то есть к разладу тонких квантовых взаимосвязей внутри объекта. Именно это пока плохо описываемое взаимодействие и мешает практически реализовать квантовый компьютер разумных размеров. Другие специалисты утверждают, что за переход к классике ответственно хоть и относительно слабое, но все же существенное гравитационное взаимодействие. Благо квантовой теории гравитации до сих пор не создано, и поэтому опровергнуть эту гипотезу трудно. Есть и другие точки зрения.

А что же его величество эксперимент, который позволил бы выбрать из разных теорий верную? К сожалению, тут, несмотря на быстрый прогресс технологий, дела обстоят неважно. Слишком трудно подобрать для подобных экспериментов достаточно простую для теоретического анализа систему, реализовать ее технически и надежно исключить все мешающие взаимодействия. Но, возможно, скоро ситуация изменится.

Израильские ученые предложили поработать с осциллятором Дуффинга. Этот простейший осциллятор (то есть грузик на пружинке) с трением и кубической нелинейностью в возвращающей силе колеблется благодаря гармонической вынуждающей силе.

Осциллятор Дуффинга хорошо изучен и, несмотря на свою простоту, может демонстрировать весьма замысловатое поведение. Его колебания могут быть, например, хаотическими. В определенных условиях классический осциллятор Дуффинга имеет два устойчивых режима колебаний, между которыми он не может переключиться. Однако в тех же условиях его квантовый аналог способен мигрировать между режимами и колебаться в промежуточных состояниях. Это резкое различие в колебаниях осциллятора поможет уверенно различать квантовое и классическое поведение объекта и проследить за переходом между ними.

Оценки показывают, что подобный осциллятор можно реализовать, закрепив концы нановолокна весом 10—21 кг и вынуждая его колебаться – например, поместив волокно между обкладками конденсатора с периодически меняющимся на них напряжением. Такое волокно, охлажденное до 10 миллиградусов выше абсолютного нуля, должно демонстрировать квантовое поведение. Тогда, меняя температуру или другие параметры системы, можно будет детально проследить за таинственным переходом между ее классическим и квантовым поведением. Теперь остается надеяться, что найдется группа опытных экспериментаторов, которая возьмется за эту вроде бы вполне разрешимую, но весьма непростую задачу. Их измерения, возможно, прольют свет на одну из самых загадочных и важных проблем современной физики. ГА

Черная дыра? Дайте две!

Ученые из Смитсоновской астрофизической обсерватории в Кембридже предположили, что у черной дыры, которая верховодит в ядре нашей Галактики, еще недавно был спутник – другая черная дыра меньших размеров.

К таким выводам астрономы пришли, изучив десяток звезд, у которых обнаружилась сверхвысокая скорость движения относительно центра Галактики. У некоторых из них скорость достигает четырех тысяч километров в секунду – так разогнать далеко не мелкие светила под силу только сверхмассивной черной дыре. Все десять звезд наверняка покинут нашу Галактику, так как теперь их полету ничто не помешает.

По сути, исследуемые звезды совершили возле ядра Млечного пути тот же маневр, который используется нами в Солнечной системе: дабы придать межпланетным зондам нужную скорость, их траекторию прокладывают так, чтобы аппараты сближались с планетами и разгонялись за счет их гравитационного поля. Проследив направление движения звезд и расстояние до галактического ядра, астрономы провели расчеты и подготовили сценарии случившегося для каждой звезды.

По одной из версий обнаруженные «торопыги» когда-то входили в двойные системы. Когда пара светил приближалась на очень малое расстояние к черной дыре, двойная система разрывалась, при этом одна из звезд пропадала за горизонтом событий, а вторая приобретала гигантский импульс и улетала прочь.

Интересен, однако, и альтернативный сценарий, который подходит для половины из рассмотренных объектов. Все они были выброшены из ядра Галактики примерно в одно время, сто двадцать миллионов лет назад. Как полагает группа кембриджских ученых под руководством Уоррена Брауна (Warren Brown), несколько десятков звезд, включая пять обнаруженных, могли быть выброшены из ядра в ходе поглощения центральной черной дырой своего спутника, черной дыры средних размеров.

Эта гипотеза о некогда существовавшей в центре Галактики двойной системе черных дыр будет, конечно, не раз проверяться. Для этого, в частности, нужно найти еще несколько «быстрых» звезд, получивших импульс те же самые 120 млн. лет назад. АБ

Новости подготовили

Галактион Андреев