Выбрать главу

Унуноктий-294 получается в результате слияния ядер изотопов калифорния-249 и кальция-48 с последующим «испарением» трех нейтронов. 98 протонов калифорния и 20 кальция в сумме как раз и дают нужные 118 протонов. Унуноктий должен быть инертным газом как радон, однако при таких его количествах изучить химические и физические свойства нового элемента пока не представляется возможным.

Авторы считают, что исследования свойств ядер сверхтяжелых элементов дают важную информацию для отбора правильных теоретических моделей атомного ядра. В частности, результаты экспериментов хорошо согласуются с моделями ядра, которые предсказывают существование «островов стабильности» среди трансурановых элементов, большинство из которых очень быстро распадается. ГА

Некоторые любят погорячее

В престижном научном журнале Nature опубликованы две статьи, поставившие в тупик многих специалистов. Авторы статей утверждают, что им впервые удалось наблюдать странное состояние вещества – квантовый конденсат Бозе-Эйнштейна в твердом теле и при удивительно высоких температурах – вплоть до комнатной. Однако в напечатанном в том же номере кратком обзоре, которые традиционно сопровождают в Nature статьи с важными научными результатами, были выражены обоснованные сомнения в корректности утверждений авторов. Или, утверждают оппоненты, следует расширить само понятие квантового конденсата. Но, во всяком случае, уже ясно, что эти результаты могут иметь самые серьезные последствия, в том числе и для компьютерных технологий. Так что и нам будет полезно разобраться, что же так озадачило специалистов.

До настоящего времени ученые хорошо понимали, что такое конденсат Бозе-Эйнштейна. Это специфическая фаза вещества, в которой все частицы с целым спином (бозоны) принимают одно и то же квантовое состояние с наименьшей энергией. Это состояние было теоретически предсказано индийским физиком Шатьендранатом Бозе и Альбертом Эйнштейном еще в 1924 году. Тем не менее прошло больше семидесяти лет, прежде чем физики научились охлаждать атомы разреженного газа рубидия и натрия до температуры настолько близкой к абсолютному нулю, чтобы значительная их часть перестала двигаться и сконденсировалась не в обычную жидкость, а в квантовый конденсат. В квантовом конденсате атомы ведут себя когерентно, то есть согласованно, как одна гигантская частица, подобно фотонам в лазере. За это достижение американцам Корнеллу, Кеттерле и Виману в 2001 году была вручена Нобелевская премия по физике.

Однако гораздо раньше удивительные свойства конденсата Бозе-Эйнштейна – сверхтекучесть и сверхпроводимость – наблюдались не в сравнительно простом разреженном газе, а в сложных системах сильно взаимодействующих друг с другом частиц. При сверхтекучести часть атомов гелия, а при сверхпроводимости часть объединившихся в пары электронов конденсируются в квантовое состояние с наименьшей энергией. Их согласованное поведение приводит к тому, что в жидкости полностью исчезает вязкость, а в сверхпроводнике – электрическое сопротивление. Вот почему квантовый конденсат так важен для практических приложений. Ведь если бы сверхпроводимость удалось получить при нормальной температуре, как много дефицитной энергии удалось бы сэкономить. Не говоря уже о разнообразных компьютерных приложениях.

К сожалению, для получения квантового конденсата вещество приходится сильно охлаждать, дабы квантовые эффекты стали доминировать над тепловым шумом и частицы могли вести себя согласованно. Для тяжелых атомов рубидия критическая температура составляет всего лишь 200 наноградусов выше абсолютного нуля, а сверхпроводимость более легких электронов наблюдается в лучшем случае при температуре порядка сотни градусов Кельвина. И это подсказывает путь получения квантового конденсата при сравнительно высоких температурах. Его пока удалось пройти двум независимым группам исследователей, которые получили квантовый конденсат различных квазичастиц в твердом теле.

Первой международной группе ученых, координируемой из Федеральной политехнической школы Лозанны, Швейцария, удалось получить квантовый конденсат из поляритонов в полупроводнике. Поляритоны – это сложные квазичастицы, состоящие наполовину из света, наполовину из вещества. Они возникают, когда экситон, то есть похожая на атом пара электрон-дырка, объединяется с фотоном. Ученым удалось получить достаточную концентрацию поляритонов в микрорезонаторе с квантовыми колодцами из кадмия-теллура и кадмия-магния-теллура. Для этого полупроводник возбуждали светом лазера. При температуре 19 градусов Кельвина наблюдались признаки спонтанного фазового перехода поляритонов в одно квантовое состояние с наименьшей энергией. Исследователи считают, что образование такого конденсата возможно и в других полупроводниках и при значительно более высоких температурах, поскольку эффективная масса поляритонов в десять тысяч раз меньше, чем у сверхпроводящих электронов.

Другой научной группе, координируемой из Института прикладной физики Университета Мюнстера, Германия, удалось получить конденсат из квазичастиц магнонов в пленке иттрий-железистого граната. Магноном называют квант коллективного, похожего на волну возбуждения магнитных состояний атомов материала (подобно тому, как фотон – это квант возбуждения электромагнитного поля). Магноны в пленке возбуждались с помощью микроволнового излучения при комнатной температуре. Когда накачка превышала некоторый порог, наблюдались признаки квантовой конденсации магнонов.

Однако у оппонентов есть к авторам немало вопросов. Можно ли называть новые когерентные состояния квазичастиц конденсатом Бозе-Эйнштейна или для них следует придумать новый термин? Ведь они существенно отличаются от уже привычного квантового конденсата атомов. Число квазичастиц не сохраняется, а время их жизни зачастую очень мало. Например, поляритоны существуют лишь несколько пикосекунд и наполовину состоят из света. Авторы возражают, что за время своей жизни квазичастицы успевают много раз взаимодействовать друг с другом и вопрос лишь в масштабах времени. А куперовские пары сверхпроводящих электронов тоже скорее квазичастицы, однако их уже давно называют конденсатом Бозе-Эйнштейна.

Но пока ученые мужи спорят о терминологии и о тонкостях поведения различных сложных систем, уже ясно, что практические последствия открытия новых когерентных состояний квазичастиц, существующих при нормальных температурах, могут быть сравнимы с последствиями изобретения лазера. ГА

Детство – в Черноголовке, зрелость – в Сокольниках

В начале октября в Москве прошла юбилейная, пятая по счету конференция ISDEF’2006 (Independent Software Developers Forum). В отеле Holiday Inn Moscow Sokolniki собралось более полутысячи человек из девятнадцати стран. Основной контингент участников – независимые разработчики программного обеспечения и те, кто заинтересован в сотрудничестве с ними.

Авторитет форума, а равно и количество участников растет с каждым годом. Встречаются на ISDEF в большинстве своем образованные и деловые люди, чей возраст редко превышает 35 лет. Им есть чему поучиться друг у друга. Интересные разговоры завязываются быстро, а обмен визитками запросто может привести к появлению новых совместных проектов.