Маска
Для защиты приватности граждан, чьи лица фиксируются камерами наблюдения, в Университете Карнеги-Меллона недавно разработана занятная технология. Компьютер на основе множества лиц на кадрах вычисляет некое "усредненное лицо" и накладывает его как маску на все лица видеозаписи перед помещением в архив. Если запись понадобится полиции, программа эту маску удалит.
В конце мая Национальный институт стандартов и технологий США подвел итоги конкурса FRVT-2006 (Face Recognition Vendor Test, или "Тестирование поставщиков систем для распознавания лиц"). Компетентное жюри констатировало, что в целом компьютерные технологии распознавания людей развиваются очень быстро. В частности, алгоритмы опознания лиц с 2002 года улучшились примерно в десять раз, а с 1995 года - в сто раз. Причем самые лучшие из протестированных технологий превосходят соответствующие способности большинства людей.
Джонатан Филипс (Jonathan Phillips), отвечавший за организацию конкурса и подготовку итогового отчета, полагает, что столь заметное снижение ошибок распознавания - одного из важнейших параметров оценки биометрических систем - достигнуто благодаря применению снимков высокого разрешения и трехмерных алгоритмов опознавания лиц. Технологии трехмерного опознавания были разработаны за последние несколько лет и на рынок вышли совсем недавно. В рамках конкурса FRVT их эксплуатационные качества впервые тестировались только в прошлом году, но зато сразу для шести новых 3D-алгоритмов. Их главная особенность, как можно понять из названия, - анализ информации об объемных формах и соотношениях деталей лица.
Среди преимуществ новой технологии отмечают способность 3D-идентификации к выделению отличительных черт в поверхности лица человека. Например, характерных трехмерных кривых для линии глазниц, носа, подбородка, где ткани и кости выступают наиболее очевидно и почти не меняют форму со временем. Кроме того, на качество работы традиционных систем распознавания лиц сильно влияет освещение. Однако форма лица, анализируемая 3D-системами, не меняется при переменах в освещении.
По свидетельству другого эксперта, Ральфа Гросса (Ralph Gross) из Института роботехники при Университете Карнеги-Меллона, 3D-системы опознавания лиц могут эффективно идентифицировать людей при разных углах поворота головы, вплоть до вида в профиль. Традиционные системы работают довольно неплохо при снимках анфас и при повороте головы на угол до двадцати градусов. Но как только угол увеличивается и лицо становится больше похоже на профиль, техника дает сбои. Объясняется это просто: ведь на ранней стадии развития этой технологии основной задачей систем распознавания была работа в качестве сканера лиц на пунктах контроля доступа, где человек по умолчанию сотрудничает с системой, подставляя лицо для проверки анфас и при правильном освещении. Ныне же главная задача - опознать людей в толпе, где угол поворота головы и условия освещения лица могут быть произвольными.
Еще один фактор существенного прогресса в технологиях машинного распознавания лиц - способность современных камер делать снимки высокого разрешения. Благодаря этому, в частности, становится возможен тщательный компьютерный анализ текстуры кожи человека. При таком анализе любой из участков кожи, именуемый кожным отпечатком (skin print), может захватываться как отдельный образ, а затем разбиваться на меньшие фрагменты, которые алгоритмами превращаются в математически зафиксированные соотношения между складками, порами и другими характеристиками кожной текстуры. Когда все эти характеристики известны, они позволяют различать даже близнецов, что обычным системам распознавания лиц пока не под силу. По свидетельству Ральфа Гросса комбинирование стандартных возможностей биометрической идентификации по лицу с анализом кожных текстур может повышать точность опознания на 20–25 процентов.
Среди выводов итогового отчета конкурса FRVT-2006 следует отметить пункт о том, что некоторые из систем распознавания лиц демонстрируют качества, превосходящие возможности человека. Ведь все люди, даже маленькие дети, как известно, столь хорошо опознают лица, что компьютерщикам долго не удавалось даже приблизиться к подобным показателям в своих алгоритмах. Джонатан Филипс объясняет достигнутый прогресс примерно так. Обычно люди очень хорошо распознают лишь уже знакомые лица. Когда же речь идет о незнакомых, картина существенно иная. В рамках тестирования FRVT впервые проводились сравнительные испытания способностей людей и алгоритмов в области распознавания незнакомых лиц. Благодаря этим тестам усредненные человеческие возможности превратились в важную меру для оценки потенциальной эффективности компьютерных приложений. Как показали эксперименты, в ситуациях, где люди давали низкий уровень ложных опознаний, шесть из семи новейших алгоритмов идентификации сработали сопоставимо или даже лучше, чем люди. Больше того, три алгоритма работали не хуже людей и при высоком уровне ложных тревог (то есть в таких условиях, где даже люди сталкивались с серьезными трудностями). В отчете перечислены разработчики этих алгоритмов: Neven Vision, Viisage, Cognitec, Identix, Институт передовых технологий Samsung (SAIT) и Университет Синьхуа. Правда, с сожалением отметил Филипс, подавляющее большинство участников конкурса FRVT-2006 не пожелало раскрывать подробности о своих технологиях, поэтому невозможно объективно оценить различия и сходство протестированных алгоритмов.
Практика ошибок