Выбрать главу
Нано? Уже не актуально!

Новую удивительную форму углерода - колоссальные углеродные трубки - вырастила команда ученых Фуданского университета (Fudan University) из Китая и Лос-Аламосской национальной лаборатории США. Поразительный набор свойств этих волокон обещает их широкое применение в самых разных областях, от текстиля до электроники.

Новые формы углерода - фуллерены, углеродные нанотрубки, карбоновая нанопена и графен - в последнее время очень популярны. Но если фуллерен или нанотрубку с некоторой натяжкой еще можно считать огромной молекулой из углерода, то новый материал уже ни в какие классификации не вписывается. Новые трубки имеют просто гигантский диаметр 40–100 мкм и длину до нескольких сантиметров. Они видны невооруженным глазом и похожи на волокна хлопка или другого текстиля. Такие трубки ученые научились получать с помощью химического осаждения паров, нагревая в кварцевой печи смесь этилена и парафинового масла до 850 градусов Цельсия. Но каким образом атомы самоорганизуются и вырастают в столь гигантские структуры, пока остается загадкой.

С помощью электронного микроскопа удалось разглядеть, что стенки трубок имеют толщину около микрона и состоят из прямоугольных пор размером от сотен нанометров до нескольких микрон. Стенки пор, в свою очередь, имеют слоистую структуру, как у графита. Колоссальные углеродные трубки очень легки, их плотность не превышает десяти миллиграмм на кубический сантиметр. Легкость сочетается с прочностью, которая на порядок выше, чем у лучших волокон из углеродных нанотрубок; в тридцать раз выше, чем у кевлара; и в двести раз выше, чем у хлопка. Электрическая проводимость колоссальных трубок на порядок больше, чем у волокон из многослойных углеродных нанотрубок, и к тому же растет с повышением температуры. Кроме того, они очень гибки и даже упруги, поскольку могут растягиваться на три процента своей длины, прежде чем в них начинают появляться дефекты.

Такое сочетание свойств и подходящие размеры делает заманчивым применение колоссальных углеродных трубок вместо обычных текстильных волокон для изготовления прочных тканей и даже бронежилетов. Причем для этого можно использовать обычные ткацкие станки и другое текстильное оборудование. Из таких трубок удастся изготавливать очень прочные и легкие композиты. Отдельные трубки могут пригодиться в медицине и, возможно, в электронике и микромеханике.

О конкретных коммерческих приложениях колоссальных углеродных трубок говорить пока рано. Сейчас ученые продолжают их изучение и стремятся усовершенствовать технологию изготовления. Но не исключено, что это открытие станет знаковым.

Вместо того чтобы получать новые материалы на наномасштабах, а потом придумывать, как изготовить из них что-то полезное привычных размеров, технологи будут сразу выстраивать атомы в практически готовый продукт. ГА

Зеркало для антивещества

К удивительным выводам пришла группа итальянских физиков после подробного анализа экспериментов двенадцатилетней давности. Оказывается, около четверти антипротонов с низкой энергией, вместо того чтобы аннигилировать, просто отражаются от слоя алюминия. Возможно, этот эффект подскажет новые способы хранения антивещества.

Свои эксперименты итальянцы проводили в Европейской лаборатории CERN с 1990 по 1996 год. Они изучали, как медленные антипротоны с энергией 1–10 килоэлектронвольт взаимодействуют с обычным веществом, возбуждая в нем экзотические атомные состояния. В эксперименте антипротоны, прежде чем попасть в мишень, пролетали сквозь цилиндр диаметром 25 и длиной 75 см, заполненный небольшим количеством водорода или гелия. Когда антипротон сталкивался с ядром атома газа, он аннигилировал с протоном, а координаты и время этого события регистрировалось детекторами, позволяя контролировать параметры пучка антивещества. Странным было то, что акты аннигиляции разбивались на две явно различные группы, что в тот момент не нашло внятных объяснений.

Теперь ученые смоделировали пучок антипротонов на компьютере, и ситуация прояснилась. Оказывается, вторая группа аннигилировавших в газе протонов просто отражалась от мишени из-за многократного резерфордовского рассеивания антипротонов на ядрах алюминия. Дело в том, что ядро примерно в сто тысяч раз меньше самого атома, а аннигиляция случается, только если антипротон попадает точно в ядро. Если антипротон промахивается, он отклоняется от направления полета электрическим полем атома, то есть рассеивается. После нескольких десятков актов такого рассеивания, проникнув в слой алюминия примерно на 5–10 нм, антипротон совсем "забывает", откуда прилетел. При этом с большой вероятностью он может вылететь из мишени, то есть отразиться от нее, как от диффузного зеркала.