Выбрать главу

Электронно-оптические модуляторы часто используются в телекоммуникационном оборудовании для кодирования информации в луче непрерывного лазера, состоящем из огромного числа фотонов. Нередко в этих устройствах применяются специальные кристаллы, которые под действием электрического поля меняют свой показатель преломления и прерывают луч. С другой стороны, в последние годы физики поднаторели в работе с отдельными фотонами, которые с точки зрения квантовой теории представляют собой волновой пакет, локализованный в пространстве и времени. Но чтобы промодулировать такой пакет, нужно как-то поймать момент его прохождения через модулятор, а это далеко не тривиальная задача.

Сегодня, чтобы проследить за отдельным фотоном, обычно используют пару запутанных фотонов, одним из которых просто запускают оборудование. Но фотоны имеют длительность всего в одну десятую пикосекунды, а так быстро модуляторы работать пока не способны. Чтобы обойти эту проблему, ученые использовали ультрахолодный газ из атомов рубидия, заставляя его испускать пары запутанных фотонов со слегка отличающимися частотами. Фотон с меньшей частотой пролетал через газ почти со скоростью света и включал модулятор, а второй сильно взаимодействовал с атомами рубидия и замедлялся примерно в десять тысяч раз, растягиваясь во времени вплоть до микросекунды. Из такого "длинного" фотона обычный модулятор уже мог "вырезать" что угодно. В экспериментах ученые получали фотоны в виде пары импульсов прямоугольной формы с длительностью по пятьдесят наносекунд, фотоны с похожей на колокол гауссовой формой и ряд других.

Однако непосредственно измерить форму волнового пакета невозможно, поскольку он определяет лишь вероятность того, что фотон будет зарегистрирован в определенном месте. Поэтому, чтобы "прописать" его в эксперименте, ученые использовали множество одинаковых фотонов, следующих друг за другом. ГА

А что в центре?

Команде астрономов, координируемой из Массачусетского технологического института, удалось заглянуть в центр нашей галактики и оценить размеры расположенного там объекта, который предположительно является гигантской черной дырой. Диаметр источника свечения оказался даже меньше, чем полагали ученые.

Согласно современным астрофизическим теориям, в центре большинства галактик находится сверхмассивная черная дыра, которую можно обнаружить по движению окружающих ее звезд и свечению поглощаемого ею вещества. Наша собственная галактика Млечный путь не является исключением, и мощный компактный радиоисточник А* в созвездии Стрельца на расстоянии 26 тысяч световых лет от Земли является хорошим кандидатом на дыру в центре галактики. Его масса, по некоторым оценкам, в четыре миллиона раз больше солнечной.

Однако надежные доказательства существования черных дыр, которые предсказываются общей теорией относительности, до сих пор не получены. Возможно, дыр не бывает вовсе, а имеющиеся наблюдения можно объяснить альтернативными теориями, которые, например, вполне обоснованно предполагают существование массивных барионных звезд.

Предыдущие наблюдения радиоастрономов за объектом А* Стрельца на волнах длиной 7 и 3,5 мм давали разные оценки его размеров. И ученые уповали на новые данные, полученные на длине волны 1,3 мм, которая значительно меньше рассеивается межзвездной средой. Чтобы добиться хорошего пространственного разрешения, была использована технология интерферометрии с очень большой базой.

Радиотелескопы, расположенные на расстоянии до четырех с половиной тысяч километров друг от друга в Аризоне, Калифорнии и на Гавайях, образовали один гигантский виртуальный прибор, разрешение которого в тысячу раз выше, чем у орбитального телескопа Хаббла, и в пять раз выше, чем во время предыдущих радиоизмерений.

Оказалось, что размер светящейся области А* Стрельца - около трех световых минут, что примерно соответствует трети расстояния от Земли до Солнца. Это меньше горизонта событий предполагаемой черной дыры, и что же там на самом деле излучает радиоволны, так пока и не ясно. Возможно, это светится материя, засасываемая и разогреваемая черной дырой, или горячие струи вещества, испускаемые вращающейся дырой с полюсов.

Астрономы полагают, что их данные о компактности источника излучения в центре галактики пока подтверждают гипотезу о существовании гигантских черных дыр. Однако полезно подождать публикаций оппонентов. Во всяком случае, очевидно, что следует продолжать наблюдения, используя еще большие массивы радиотелескопов. Только они позволят как следует рассмотреть, что же все-таки светится в центре нашей галактики. ГА

Завязанный луч

Физикам из Нью-Йоркского и Калифорнийского университетов впервые удалось завязать луч света в узел.

Всем известно, что обычный свет распространяется в пустоте строго по прямой. Его можно слегка отклонить, если искривить само пространство-время сильным гравитационным полем. Это происходит, например, если луч далекой звезды проходит рядом с другой звездой, гравитационное поле которой действует как линза, что помогает астрономам разглядеть объекты, находящиеся на окраинах Вселенной.

Распространение лучей света, как и другие электромагнитные явления, описывается уравнениями электродинамики Максвелла. Но у этих уравнений есть и малоизвестные экзотические решения, полученные теоретиками около двадцати лет назад. Они тесно связаны с так называемыми расслоениями Хопфа, описывающими свойства отображений многомерных сфер. У таких экзотических решений все линии электрического и магнитного полей замкнуты и связаны друг с другом.

Долгое время все это не выходило за рамки расчетов, но теперь ученые решили выяснить, удастся ли реализовать такие завязанные лучи света на практике. Оказалось, что это вполне возможно, если тщательно сфокусировать лазерный импульс с круговой поляризацией. А если добавить пространственный модулятор и элементы голографии, то из света можно "вязать" узлы разной формы.

Пока новые экзотические состояния света изучены мало. Поэтому не очень ясно, как их можно использовать, хотя уже очевидно, что приложения завязанного в узел света могут быть самыми разными. Им можно удерживать и передвигать атомы, ионы и наночастицы, возбуждать экзотические состояния в плазме и нелинейных средах. А за научными приложениями, быть может, последуют и коммерческие. ГА

Квантовые неприятности

Физики из Университета Умео в Швеции при поддержке коллег из Мэрилендского университета обнаружили новый досадный механизм разрушения информации в плазмонных устройствах. Этот механизм начинает работать на наномасштабах и ставит предел миниатюризации плазмонных устройств.

Как известно, сегодня в качестве носителя информации в основном используют электроны, хотя для ее передачи гораздо предпочтительнее фотоны. Но фотоны невозможно втиснуть в волноводы существенно меньше длины волны, а электроны накладно посылать на большие расстояния.

Обойти эти естественные ограничения в электронике будущего ученые собирались, "скрестив" электроны с фотонами и получив поверхностные плазмоны, плазмоны-поляритоны и другие квазичастицы, которые эффективно распространяются вдоль границ проводников и диэлектриков, представляя собой коллективные колебания электромагнитного поля и электронов вещества. У поверхностных плазмонов длина волны существенно меньше, чем у фотонов с той же частотой, и их легче втиснуть в замкнутый объем чипа.

Это направление активно исследуется в последние годы на основе классических представлений. Но когда размеры устройств достигли наномасштабов, стал проявляться двойственный квантово-волновой характер электронов, и ученым пришлось перейти к более сложной квантовой теории. И тут выяснилось, что помимо обычного механизма затухания плазмонов в результате их столкновений и рассеяния на различных неоднородностях, появляется еще один квантовый механизм разрушения переносимой плазмонами информации. Из-за квантовой неопределенности в положении и движении электронов плазмоны быстро затухают. Это порождает фундаментальные ограничения на минимальные размеры плазмонных устройств, а с ним и достижимые пределы миниатюризации чипов.