Выбрать главу

Астрономы полагают, что их данные о компактности источника излучения в центре галактики пока подтверждают гипотезу о существовании гигантских черных дыр. Однако полезно подождать публикаций оппонентов. Во всяком случае, очевидно, что следует продолжать наблюдения, используя еще большие массивы радиотелескопов. Только они позволят как следует рассмотреть, что же все-таки светится в центре нашей галактики. ГА

Завязанный луч

Физикам из Нью-Йоркского и Калифорнийского университетов впервые удалось завязать луч света в узел.

Всем известно, что обычный свет распространяется в пустоте строго по прямой. Его можно слегка отклонить, если искривить само пространство-время сильным гравитационным полем. Это происходит, например, если луч далекой звезды проходит рядом с другой звездой, гравитационное поле которой действует как линза, что помогает астрономам разглядеть объекты, находящиеся на окраинах Вселенной.

Распространение лучей света, как и другие электромагнитные явления, описывается уравнениями электродинамики Максвелла. Но у этих уравнений есть и малоизвестные экзотические решения, полученные теоретиками около двадцати лет назад. Они тесно связаны с так называемыми расслоениями Хопфа, описывающими свойства отображений многомерных сфер. У таких экзотических решений все линии электрического и магнитного полей замкнуты и связаны друг с другом.

Долгое время все это не выходило за рамки расчетов, но теперь ученые решили выяснить, удастся ли реализовать такие завязанные лучи света на практике. Оказалось, что это вполне возможно, если тщательно сфокусировать лазерный импульс с круговой поляризацией. А если добавить пространственный модулятор и элементы голографии, то из света можно "вязать" узлы разной формы.

Пока новые экзотические состояния света изучены мало. Поэтому не очень ясно, как их можно использовать, хотя уже очевидно, что приложения завязанного в узел света могут быть самыми разными. Им можно удерживать и передвигать атомы, ионы и наночастицы, возбуждать экзотические состояния в плазме и нелинейных средах. А за научными приложениями, быть может, последуют и коммерческие. ГА

Квантовые неприятности

Физики из Университета Умео в Швеции при поддержке коллег из Мэрилендского университета обнаружили новый досадный механизм разрушения информации в плазмонных устройствах. Этот механизм начинает работать на наномасштабах и ставит предел миниатюризации плазмонных устройств.

Как известно, сегодня в качестве носителя информации в основном используют электроны, хотя для ее передачи гораздо предпочтительнее фотоны. Но фотоны невозможно втиснуть в волноводы существенно меньше длины волны, а электроны накладно посылать на большие расстояния.

Обойти эти естественные ограничения в электронике будущего ученые собирались, "скрестив" электроны с фотонами и получив поверхностные плазмоны, плазмоны-поляритоны и другие квазичастицы, которые эффективно распространяются вдоль границ проводников и диэлектриков, представляя собой коллективные колебания электромагнитного поля и электронов вещества. У поверхностных плазмонов длина волны существенно меньше, чем у фотонов с той же частотой, и их легче втиснуть в замкнутый объем чипа.

Это направление активно исследуется в последние годы на основе классических представлений. Но когда размеры устройств достигли наномасштабов, стал проявляться двойственный квантово-волновой характер электронов, и ученым пришлось перейти к более сложной квантовой теории. И тут выяснилось, что помимо обычного механизма затухания плазмонов в результате их столкновений и рассеяния на различных неоднородностях, появляется еще один квантовый механизм разрушения переносимой плазмонами информации. Из-за квантовой неопределенности в положении и движении электронов плазмоны быстро затухают. Это порождает фундаментальные ограничения на минимальные размеры плазмонных устройств, а с ним и достижимые пределы миниатюризации чипов.

Однако ученые не унывают. Поверхностные плазмоны-поляритоны - довольно сложные квазичастицы, а значит, есть шанс найти лазейку, которая позволит обойти ограничения квантовой диссипации. Удастся ли это сделать, покажут дальнейшие исследования. ГА

Немые дырки

Удивительный эффект обнаружили физики из Политехнического университета Валенсии. Оказывается дырки, просверленные в листе металла, способны не только не пропускать, а, наоборот, эффективно подавлять звук определенных частот.

Свои эксперименты ученые проводили с листами из латуни и алюминия толщиной 2–3 мм, погруженными в воду. Выбор этой среды продиктован тем, что жидкость позволяет проводить опыты в компактной емкости на столе, а для экспериментов на воздухе потребовалась бы большая камера. С одной стороны листа ставили излучатель ультразвука с длиной волны 4,5–8,8 мм, а с другой - приемник, фиксировавший прохождение звука сквозь экран.