Выбрать главу

Интересно, что многие принципиальные сложности, связанные с устройством дороги с Земли на орбиту, пропадают (или же теряют свою остроту), если искать применение «лифтовому хозяйству» в дальнем космосе, на что указывал опять же еще Арцутанов. Ведь с гравитацией астероидов, спутников планет или даже Марса вполне могут справиться нынешние материалы и энергетические установки. Не исключено, что первые конструкции такого типа возникнут где-нибудь возле Луны . Ее медленное вращение, правда, не позволяет использовать ту же схему, что и с земной геостационарной орбитой, но конец троса с грузом можно поместить, например, в точку либрации между Луной и Землей. Такой лифт будет длиннее земного, но требования к нему предъявляются не столь жесткие.

Космическое ткачество

Предположим, что проблемы с материалом и энергетикой благополучно разрешены. Но ведь надо еще каким-то образом построить сам космический лифт. Если изготовить трос на Земле, то ракетные технологии вряд ли позволят целиком забросить его на орбиту. Даже если выводить трос в космос по частям, стоимость проекта надолго сделает лифт нерентабельным — ведь масса материала может достигать многих тысяч тонн. Еще Арцутанов предложил начать с небольшой спущенной с небес «нитки». Но как спустить с геостационарной орбиты первую, хотя бы и очень тонкую нить? Нужно, конечно же, выпускать сразу два «уса» — в противоположных направлениях, к Земле и от нее, — с тем расчетом, чтобы сам спутник в процессе вытравливания этого троса не смещался с нужной орбиты. При движении на трос будет действовать сила Кориолиса, отклоняющая его от вертикального направления, а на начальном участке нить вообще будет покоиться в невесомости. Поэтому ее движением, вероятно, придется какое-то время управлять с помощью небольших двигателей коррекции.

  

Противовес космического лифта, находящийся на высоте геостационарной орбиты, обеспечивал бы постоянное натяжение конструкции

Когда нить достигнет Земли, по ней взберутся первые роботы-строители, которые примутся наращивать толщину каната уже на месте. В принципе эти «паучки» могут быть самых что ни на есть микроскопических размеров. Возможно, к тому времени, когда развернется космическая стройка, нанороботы, которые сегодня кажутся нам едва ли не большей фантастикой, чем сам лифт с Земли на небо, уже станут реальностью, и достаточно будет просто их запрограммировать. Эти же невидимые труженики-нанороботы могли бы подновлять материал, устраняя постоянно возникающие дефекты и повреждения. Кстати, если развитие нанотехнологий пойдет в соответствии с оптимистичными прогнозами, то должны появиться и саморазмножающиеся нанороботы. Вся стоимость космического лифта будет тогда определяться лишь услугами проектировщиков и программистов, ну и изготовлением первичной нити. Надо только побеспокоиться о безопасности применения нанороботов «на свежем воздухе» — исключить неконтролируемое размножение, мутации и т. п. Если это будет сделано, лифты вообще станут «самособирающимися» и самообслуживающимися и органично впишутся в ландшафт грядущего века нанотехнологий.

Впрочем, целый ряд серьезных проблем остается и после успешного построения космического лифта — на стадии эксплуатации. Определенное беспокойство специалистам, следящим за целостностью нитей, может доставлять различный космический мусор. Банальные грозы с ураганами или обледенение могут повредить нижний, самый тонкий участок троса, а поскольку вверху он только утолщается, нельзя восстановить обрыв, просто немного приспустив трос. В число возможных бед включают и собственные колебания гигантской «струны», которые могут привести к ее разрушению. У проблемы построения дороги на небо есть также определенные военные и политические аспекты. Достаточно представить, насколько привлекательной мишенью для террористов станет такое гигантское хрупкое сооружение!

Допустив на минуту, что все сложности удалось обойти, и посчитав возможную выгоду от этого предприятия, мы сразу поймем энтузиазм NASA. Ведь с приходом лифтов себестоимость поднятия килограмма на высоту геостационарной орбиты составит от нескольких долларов (согласно оптимистичным оценкам) до сотен долларов (по самым пессимистичным). Сравните это с тысячами и десятками тысяч долларов за килограмм при современных ракетных технологиях. По мнению Брэдли Эдвардса, одного из основателей компании HighLift Systems, которой NASA выделило финансирование для исследований по проблеме космического лифта, на реализацию проекта потребуется от 10 до 40 миллиардов долларов — сравнимо с разработкой новых шаттлов. Если верить этой оценке, то затраты с лихвой окупятся уже за первые десятилетия эксплуатации нового чуда техники.