Выбрать главу
Неустойчивый атом

Про то, что существуют минимальные, далее неделимые, частицы материи, говорили еще древние греки. К концу XIX века уже почти никто из ученых не сомневался в реальности атомов, но было непонятно, как они устроены и из чего состоят. Существовало много разных гипотез, но только в 1911 году, после опытов английского физика Эрнеста Резерфорда по обстрелу атомов золота а-частицами, родилась планетарная модель атома. Согласно этой модели в центре атома, подобно маленькому солнцу, располагалось ядро. Вокруг ядра, сходно планетам, обращались электроны, удерживаемые электромагнитными силами. Планетарная модель позволила объяснить результаты опытов, но оставался непонятным факт существования атома. Согласно классической теории электрон, вращающийся в атоме, должен излучать электромагнитные волны. Излучение сопровождается потерей энергии. Теряя энергию, электрон должен в конце концов упасть на ядро, а атом – прекратить свое существование.

Выход из этого «тупика» был предложен в 1913 году датским физиком Нильсом Бором. В своей модели Бор рассматривал электроны как классические частицы, движущиеся вокруг маленького массивного ядра под влиянием электрического поля. Однако вопреки законам классической физики Бор предположил существование в атоме стационарных (не меняющихся во времени) состояний, каждому из которых соответствует определенная энергия. В стационарных состояниях электрон не излучает. Излучение и поглощение света происходят лишь в том случае, когда атом переходит из одного состояния в другое.

Волновая гипотеза Бройля

Сначала только свету приписывалось такое странное свойство – быть одновременно и волной, и частицей. Вещество же рассматривалось как система обычных точечных частиц. В 1923 году Луи де Бройль выдвинул гипотезу об универсальности дуализма волна—частица. Согласно этому предположению не только фотоны, но и электроны, а также любые другие частицы обладают волновыми свойствами. И это касается как микроскопически малых атомов и молекул, так и любых других окружающих нас макроскопических объектов.

Основным признаком волн является их способность интерферировать, то есть складываться и вычитаться. Другими словами, если вещество обладает волновыми свойствами, то для него должны наблюдаться явления дифракции (огибание волнами встречающихся на пути препятствий) и интерференции (сложения и вычитания волн).

Прямое экспериментальное доказательство того, что электроны могут дифрагировать и интерферировать, было получено в 1927 году в опытах Клинтона Дэвиссона и Лестера Джемера, а также, независимо от них, в экспериментах Джорджа Томсона. В настоящее время экспериментаторы наблюдают интерференцию и других частиц, вплоть до молекул. Так, в 2003 году в Институте экспериментальной физики Венского университета была впервые обнаружена квантовая интерференция органических молекул биологического происхождения C4444H3 0N4, содержащих 44 атома углерода, 30 атомов водорода и 4 атома азота. В связи с этими экспериментами возникает вопрос: возможна ли квантовая интерференция живых существ?

После выдвижения де Бройлем гипотезы об универсальности дуализма волна—частица и экспериментального подтверждения наличия у частиц вещества волновых свойств возникли новые принципиальные проблемы. Стало необходимым совместить волновую природу частиц с привычными представлениями о размещении (локализации) частиц в пространстве.

Предсказуемая пси-функция

Как уже говорилось, квантовые объекты существенно отличаются от классических. Достаточно ярко это отличие видно при прохождении пучка частиц через экран с двумя щелями. Когда на щели налетают классические частицы, то каждая проходит заведомо лишь через какую-то одну щель и на экране четко видны две независимые области попадания пролетевших частиц. Применительно к квантовым объектам положение оказывается иным. Квантовые частицы (например, электроны) одновременно проходят через обе щели, причем этот процесс описывается вероятностными методами. Явление интерференции электронов приводит к тому, что на экране наблюдается картина, характерная для прохождения волн, – с большим количеством максимумов и минимумов интенсивности. Квантовые частицы (каждая из них) как бы «чувствуют» наличие обеих щелей. Происходит не сложение волн различных квантовых частиц, прошедших через разные щели, а интерференция волны каждой из квантовых частиц на обеих щелях.