Выбрать главу

Радиоизлучение пульсаров связано с наличием сильного магнитного поля и очень быстрым вращением: шарик массой примерно с наше Солнце и диаметром несколько десятков километров успевает повернуться вокруг своей оси за сотые доли секунды. Вращение многих нейтронных звезд нельзя заметить глазом, поскольку они совершают полный оборот за время, меньшее, чем смена кадров в фильме.

Рентгеновское излучение нейтронной звезды возникает благодаря сильнейшей гравитации на ее поверхности. Камень, брошенный на такой объект, выделит больше энергии, чем ядерная бомба такой же массы. Если система двойная, то возможна ситуация, когда вещество начинает перетекать на нейтронную звезду со второго компонента, и мертвая нейтронная начинает активно излучать рентгеновские кванты.

Взрыв тяжелой сверхновой звезды сопровождается не только резким увеличением светимости, но и выбросом огромной массы газа в окружающее пространство

Однако не все такие звезды обладают быстрым вращением вкупе с сильным магнитным полем или входят в состав тесных двойных систем. За последние десять лет «коллекция» нейтронных звезд пополнилась новыми редкими экземплярами. Взять хотя бы источники, за которыми закрепилось название «Великолепная семерка».

Первый из семерки, знаменитый объект RX J18563754, является самой близкой к Земле молодой нейтронной звездой. Она была открыта 10 лет назад при наблюдениях на спутнике ROSAT области звездообразования. С помощью этого же спутника были открыты и остальные шесть.

Эти объекты светятся благодаря тому, что они пока относительно молоды – их возраст менее миллиона лет. Они еще не остыли после рождения. Кроме рентгеновского излучения от некоторых из них зарегистрировано и оптическое. Это слабые-слабые звездочки, едва различимые в самые мощные телескопы. Несмотря на то что известно всего семь таких звезд, можно сказать, что они являются едва ли не самыми типичными представителями нейтронных. Ведь если даже в такой близости от Солнца существуют такие молодые нейтронные звезды, то, видимо, они рождаются в нашей Галактике довольно часто. Просто более далекие или более старые объекты, подобные «Великолепной семерке», пока недоступны для наших инструментов, по крайней мере, их нелегко идентифицировать среди множества слабых источников.

Экзопланета в двойной системе

Планеты обнаружены около самых разных звезд. Есть среди них и такая, которая вращается вокруг звезды, чьим компаньоном по двойной системе является белый карлик. Несколько лет назад было доказано, что звезда Gl86 имеет планету. Кроме того, на небольшом расстоянии был обнаружен еще один объект, однако было неясно, связан ли он с Gl86 или нет. Астрономы смогли показать, что связан. Причем это не обычная звезда, а именно белый карлик. Таким образом, теперь известно о существовании экзопланет в двойных системах с белыми карликами. Такая планета – настоящий герой: она смогла образоваться и выжить в двойной системе, в которой одна из звезд сбросила свою оболочку.

Белый карлик устойчив, поскольку гравитация, стремящаяся его сжать, уравновешивается давлением вырожденного электронного газа. Однако если увеличивать массу карлика, то в конце концов он потеряет устойчивость и, вспыхнув на краткое время, станет нейтронной звездой. Как же можно увеличить массу белого карлика? Путем аккреции – если у карлика есть звезда-компаньон, то вещество с нее может начать перетекать на компактный объект. Другой вариант возможен при слиянии двойной системы, состоящей из двух белых карликов. Такие сверхновые типа Ia очень важны, так как они очень похожи друг на друга. Это позволяет использовать их в качестве так называемой «стандартной свечи». Наблюдая сверхновую этого типа в далекой галактике, можно с достаточной точностью определить расстояние до нее. Именно такие наблюдения позволили в 1998 году открыть ускорение расширения Вселенной. Таким образом, оказывается, что белые карлики сыграли важную роль в современной космологии. Планируется запуск специальных космических телескопов для поиска далеких сверхновых типа Ia.

Билет в один конец