Выбрать главу

Основную часть энергии сегодня дает сжигание углеводородного топлива – газа, нефти, каменного угля. Даже если не задаваться вопросом, на сколько хватит нам запасов газа и нефти – на 20, 30 лет или на более длительный срок, ясно, что этот энергетический ресурс ограничен, не говоря уж о том, что сжигать в топках электростанций такое уникальное химическое сырье ” это непростительное варварство и обкрадывание наших потомков. Дарованных нам природой запасов каменного угля хватит на сотни лет интенсивной экономики, однако при этом будет использована значительная часть атмосферного кислорода, и нам просто станет трудно дышать, а образовавшийся углекислый газ, как стекло в парнике, будет удерживать накапливающееся тепло, что приведет к таянию ледников, повышению уровня Мирового океана и затоплению многих густонаселенных участков суши. К тому же дорогостоящая очистка выделяемых нефтяными и угольными электростанциям газов от золы, серных окислов и других вредных для всего живого химических веществ делают производимую таким образом энергию в несколько раз более дорогой по сравнению с атомной. Оценки показывают, что электростанциям на углеводородном топливе не выдержать конкуренции с новыми атомными технологиями, о которых пойдет речь ниже.

В Германии под нажимом «зеленых» недавно принято решение к 2021 году закрыть все атомные электростанции. Можно сомневаться в выполнении этого решения. Конкуренция и экономическая эффективность – мощная сила, особенно в условиях свободного рынка!

Иногда в качестве радикального решения проблемы предлагается ограничить наши энергетические аппетиты. Однако в обозримом будущем это едва ли удалось бы сделать. Количество энергии, приходящееся сегодня на одного жителя США. примерно в 10 раз больше, чем в развивающихся странах так называемого третьего мира, где проживает основная часть населения планеты. Трудно думать, что американцы согласятся отказаться от привычного комфортного образа жизни, а густонаселенные развивающиеся страны нельзя «заморозить» на современном голодном уровне энергетики. Многие из них испытывают хронический энергетический кризис. Например, недавно я был в Джайпуре – крупном индийском городе недалеко от Дели. Там регулярно происходят веерные отключения электроэнергии. Ежедневно на несколько часов.

Трудности усугубляются еще и тем, что все большее количество энергии – и как раз в бедных густонаселенных странах – требуется для очистки и опреснения воды. В настоящее время 20 процентов населения Земли пьет заведомо вредную для здоровья воду, 50 процентов (каждый второй житель Земли!) использует плохо очищенную воду низкого качества. Пресной, пригодной для питья воды на Земле всего лишь 2,5 процента, да и та в основном в виде уменьшающихся благодаря таянию ледников Гренландии и Антарктиды.

Таким образом, все говорит о том, что без атомной энергетики человечеству не обойтись. Вместе с тем надо прислушаться и к «зеленым»: атомная энергетика сопряжена с огромной опасностью. И вопрос в том, можно ли эту опасность устранить. Если – нет, то, несмотря на все ее достоинства, от атомной энергии придется отказаться.

Две проблемы

Как шутят противники атомной энергии, использовать ее – это все равно как целоваться с тигром: удовольствия мало, а страху натерпишься!

Прежде всего, страх вызывает возможность атомного взрыва, поскольку всякий атомный реактор работает в режиме «на лезвии ножа». Имея в виду безопасность атомной энергетики, эту возможность рассматривают как проблем} № 1. Однако, как любил говорить Эйнштейн, не этот ботинок жмет. После Чернобыльской катастрофы атомные реакторы стали несравненно более надежными, и вероятность серьезной аварии с заражением окружающей среды крайне мала, хотя, как показала недавняя история нашей страны, абсолютной гарантии не дает даже хваленый страховой полис. Ни одна технология, понятно, не может быть безопасной «на все 100». Важно, чтобы были исключены крупные атомные аварии, а мелкие, локальные неполадки с быстро устраняемыми последствиями не страшны.

Основная «атомная опасность» кроется в крайне вредных для всего живого радиоактивных отходах атомного производства – в шлаках, накапливающихся в атомных реакторах и теряющих свою радиоактивность лишь через сотни тысяч и миллионы лет. Все это время шлаки должны оставаться надежно изолированными от окружающей среды, хотя за столь длительный период может произойти масса непрелвидеиных событий: землетрясения и сдвиги земной коры, падение крупного астероида, как это уже не раз случалось, и мало ли что еще! Достаточно перелистать страницы научно-фантастических романов или посмотреть пару-тройку футуристических фильмов, чтобы убедиться, как много разнообразных природных и социальных катаклизмов грозит безопасности таких хранилищ и вместе с тем, возможно, самому существованию нашей цивилизации. На Земле нет надежно изолированных областей, через грунтовые и поверхностные воды, через Мировой океан мы все вовлечены в единый кругооборот. Тут лишь вопрос времени, а миллионов лет для этого более чем достаточно.

В последнее время идут ожесточенные споры о том, можно ли ввозить для очистки от шлаков на наших заводах топливо из зарубежных атомных реакторов* Все дело в том, где будут сохраняться сепарированные шлаки. Если они будут возвращаться за рубеж, то против такого весьма выгодного в экономическом отношении бизнеса нет серьезных возражений. Иное дело, если шлаки будут оставаться в нашей стране, даже, казалось бы, в весьма удаленном районе, превращая его в потенциально опасную радиоактивную свалку. Тем более что стоимость эксплуатации и обеспечения безопасности «ядерных могильников» в течение миллионов лет (!!) превзойдет любую получаемую сегодня выгоду. Учитывая любовь политиков к так называемому расширенному толкованию соглашений, вопрос о сохранении сепарированных шлаков должен быть четко и однозначно прописан в государственном законе.

Трансмутация

А нельзя ли каким-либо образом искусственно снизить радиоактивность атомных шлаков и тем самым вообще избавиться от долговременных радиационных «могильников»? Если к тому же удастся так изменить устройство атомных электростанций, чтобы они работали значительно ниже критического уровня «на острие ножа», это сделало бы атомную энергию гарантированно безопасной и планета на многие сотни и даже тысячи лет имела бы неиссякаемый источник энергии.

Оказывается, эта, с первого взгляда совершенно фантастическая задача вполне разрешима и, более того, близка к практическому осуществлению. Надежды физиков связаны с «промышленной алхимией» – переработкой долгоживущих радиоактивных изотопов в ядра с коротким временем жизни внутри так называемых электроядерных трансмутаторов.

Вообше говоря, перерабатывать долгоживущие радиоактивные атомные ядра в короткоживушие можно уже внутри самих атомных реакторов, подобрав такой режим их работы, когда основная часть нейтронов внутри атомного топлива обладает достаточно большой энергией для того, чтобы раскалывать наиболее опасные тяжелые изотопы ядерных шлаков на более легкие. К сожалению, различие между количеством образующихся и расщепляемых тяжелых шлаков невелико, и переработка уже накопленных нами шлаков займет, по-видимому, несколько сотен лет. К тому же, поскольку реакторы-трансмутаторы всегда работают «налезвии ножа», по- прежнему остается пугающая опасность крупных атомных аварий.

Однако, если через специальную щель внутри реактора ввести пучок движущихся с большими скоростями протонов или других частиц, они будут бомбардировать атомные ядра, вышибая из них дополнительные нейтроны, и тогда реактор, получив такую «подсветку», сможет работать значительно ниже «острия ножа» – в безопасном режиме. Ему не нужно соблюдать строгий баланс рождающихся и поглошаемых нейтронов – недостаток покрывается пучком бомбардирующих частиц из расположенного рядом ускорителя. Реактор не способен взорваться.