Выбрать главу

Из реплик участников прошедших экспериментов.

По ходу дела выходит из строя почти все, что должно было выйти. Почти все блоки были заменены.

И только люди всегда на месте и дежурят круглосуточно...

То, что мы применяем, не имеет аналогов, используется в единичном экземпляре. Это невозможно отработать на конвейере...

Запись в журнале после просадки напряжения: "Все ушли спать".

НОВОСТИ НАУКИ

Повторение "Большого взрыва"

Нет-нет, речь не о новом возникновении Вселенной. Речь о намерении группы физиков, включающей в себя ученых из США, Западной Европы, России, Японии, воспроизвести в лабораторных условиях некий аналог "Большого взрыва".

По современным представлениям, Вселенная, возникшая за ничтожно короткий отрезок времени в результате "Большого взрыва", в настоящее время продолжает расширяться лишь под действием загадочной "темной энергии". Кроме того, значительная часть массы Вселенной представлена "темным веществом", о котором тоже мало что известно. Исследование, которое намечено провести в будущем году в ЦЕРНе под Женевой, как раз призвано помочь хоть как- то подступиться к изучению свойств темного вещества и темной энергии.

В ходе эксперимента ученые должны воспроизвести столкновения между частицами, подобные тому, какие происходили в тысячную долю секунды после Большого взрыва, а затем сравнить полученные результаты с так называемой стандартной моделью строения Вселенной. Пройдет эксперимент так: в кольце ускорителя (коллайдера, который сейчас проходит модернизацию с целью увеличения мощности) с атомов золота "сорвут" электроны, и полученные ионы золота разгонят до 99,9% скорости света. Частицы будут двигаться навстречу друг другу, что увеличит энергию столкновений. В точке соударения, согласно расчетам, должна образоваться сверхплотная материя с температурой в триллион градусов. Таких условий в настоящее время не существует даже в глубине звезд. Они были возможны лишь в момент возникновения Вселенной.

Какой массой обладают нейтрино

Ученые из американской Национальной лаборатории Ферми смогли оценить массу нейтрино. Долгие годы считалось, что нейтрино является нейтральной элементарной частицей с нулевой массой, которая слабо взаимодействует с веществом. Столь важный результат получен в ходе международного эксперимента MINOS (Main Injector Neutrino Oscillation Search).

Существование нейтрино предсказал Вольфганг Паули в 1931 году, но лишь в 1956-ом физики-экспериментаторы впервые сумели зафиксировать его. Позже выяснилось, что существуют три типа частицы — электронное, мюонное и тау-нейтрино. При этом считалось, что един тип нейтрино не может переходить в другой. Из трех теоретически существующих типов нейтрино только первые два были обнаружены экспериментально.

В 1998 году было заявлено о наблюдении так называемых нейтринных осцилляций, то есть изменении типа нейтрино при прохождении сквозь вещество. Это автоматически подразумевает наличие у нейтрино массы. Тогда новость взбудоражила международную научную общественность. Дело в том, что наличие даже ничтожной массы у нейтрино влечет за собой существенный пересмотр современной теории физики элементарных частиц и, по сути, открывает новую эру в нашем понимании микромира и будущего Вселенной.

Физики пытались "взвесить" нейтрино на протяжении уже нескольких десятилетий, проводимые для этого эксперименты относятся к числу самых трудоемких и дорогостоящих.

Нейтрино свободно преодолевает толщу вещества. Поэтому в ходе эксперимента MINOS экспериментаторы направляли пучок частиц, сгенерированных в лаборатории, сквозь земную кору на расстояние в 735 километров, которое отделяло генератор в штате Иллинойс от детектора в штате Миннесота, погруженного в 800-метровую шахту. Ученые обнаружили, что по пути теряется примерно одна стотысячная массы электрона в расчете на одну "исчезнувшую" частицу. В эксперименте MINOS исходный пучок состоял из мюонных нейтрино, которые во время пролета дистанции совершали "осцилляции" или исчезали.

"Цифровой" участок мозга

Участок человеческого мозга, занимающийся исключительно операциями с дискретными цифрами, нашел британский нейрофизиолог Брайан Баттерворф из Лондонского университетского колледжа. Баттерворф вместе с соавторами выяснил, что за обработку чисел отвечает так называемая "межтеменная борозда" (IPS), при этом действия над "непрерывными" величинами ее никак не затрагивают.