Выбрать главу

В марте 2006 года премией имени Герты Шпонер, присуждаемой в Германии женщинам-физикам, была награждена уроженка Твери Екатерина Шамонина из Оснабрюкского университета «за выдающийся вклад в область разработки электромагнитных метаматериалов».

Еще одну модель предложили Андреа Алу и Надер Энгита из Пенсильванского университета. На поверхность предмета наносится «плазмонное» покрытие (плазмоны — это квазичастицы, описывающие колебания электронов вокруг тяжелых ионов в плазме твердых тел). Когда частота колебаний электронов и частота падающего на поверхность электромагнитного излучения совпадут, излучение перестает рассеиваться — предмет станет невидим в этом диапазоне.

Игра вслепую на миллионы

Уже сейчас к подобным исследованиям проявляет большой интерес Пентагон. Из метаматериалов можно изготавливать военную технику будущего: направленные антенны, маскирующие покрытия для самолетов и многое другое. Так, еще четыре года назад командование американской армии выделило Массачусетскому технологическому институту более 50 миллионов долларов на разработку солдатской униформы, которая превратит обычного пехотинца в «бойца невидимого фронта». Не случайно, и тот же Дэвид Скариг занимается экспериментами «на средства американских спецслужб», пишет немецкая газета «Die Welt». Возможно, все исследования такого рода вскоре будут засекречены.

Но эти эксперименты нужны не только военным. Метаматериалы могут произвести настоящую революцию и в оптике. Они требуются для создания идеальных линз.

Современные линзы, фокусируя свет, теряют — особенно в краевых зонах — некоторую часть содержавшейся в нем информации, а вот оптические приборы, изготовленные из метаматериалов, будут передавать стопроцентно точное изображение. Разрешающая способность «суперлинз» далеко превзойдет возможности лучших микроскопов и достигнет нескольких нанометров. Благодаря им станет виден весь Микромир — и, конечно, заметно расширятся возможности медицинской диагностики и биологических исследований.

Кроме того, ведутся разработки мобильных телефонов с нанопокрытием, которое будет отклонять электромагнитное излучение, защищая от него любителей подолгу поболтать по «трубе». Подобные модели аппаратов появятся сравнительно скоро.

Теоретически — это уже дело отдаленного будущего — можно маскировать и крупные объекты, например, скрывать космические корабли от телескопов, ведь те ведут наблюдение в длинноволновом диапазоне. Подобным приемом пользовались, похоже, и герои «Star Trek», ловко ускользавшие от станций наблюдения очередной внесолнечной планеты.

Так что рынок «незримых товаров» обещает огромную прибыль. Исподволь, неприметно они войдут в наш обиход.

Метаматериалы:

ищем вместе в интернете

В интервью сайту perst.isssph.kiae.ru В. Г. Веселаго рассказал: «Конечно, я никогда не забывал об этой своей работе и следил за публикациями по этой и смежной темам. Я не сомневался, что рано или поздно данная идея будет реализована... Примерно в 1964 году я с группой своих сотрудников занимался проблемой возбуждения и распространения электромагнитных волн в металле, точнее, в так называемой плазме твердого тела. Мы оказались первыми, кто наблюдал непосредственное прохождение электромагнитных волн сквозь массивные (толщиной порядка одного сантиметра) образцы металла — это был висмут. Естественно, что изучались различные варианты эксперимента и, в частности, тот хорошо известный случай, когда эффективная диэлектрическая проницаемость плазмы твердого тела оказывалась меньше нуля и волна не могла распространяться, так как коэффициент преломления оказывался мнимым. И вот тогда я задал сам себе вопрос — а что будет, если среда, в которой распространяется волна, будет иметь одновременно отрицательные значения и электрической, и магнитной проницаемости. Далее последовал достаточно полный анализ проблемы, и родилась основная публикация по этой теме — в журнале «Успехи физических наук». Поэтому реализация западными коллегами нашей идеи на базе композитного материала. явилась существенным прорывом на этом направлении».