Естественно, что от пузырьков, находящихся на большем удалении, отраженные сигналы слабее, поэтому звучание реверберации постепенно замирает.
Если звуковая волна на своем пути встретит какое-либо упругое препятствие, то от него отраженный сигнал будет сильнее реверберации. Этот отраженный сигнал принято называть эхом. Отраженный звуковой сигнал, т. е. эхо, можно наблюдать не только в море, но и воздухе, если крикнуть в ущелье (рис. 24) или хлопнуть в ладоши в большом пустом помещении.
Рис. 24. Эхо.
Звук затухает
Интенсивность звука в море уменьшается (звук затухает) по мере удаления акустических волн от источника. Это происходит в результате расширения фронта волны, поглощения и рассеяния звуковой энергии. На больших расстояниях звук в воде настолько слабеет, что перестает быть слышимым.
Мы уже знаем, что звуковая волна представляет собой колебательное движение частиц. Энергия частиц передается от частицы к частице не целиком, так как часть энергии расходуется на теплообразование. Превращение частиц звуковой энергии в тепловую называется поглощением звуковой энергии. С повышением частоты поглощение звуковой энергии увеличивается.
Ослабление интенсивности звука в море связано также с явлением реверберации. Неоднородность среды, наличие пузырьков газа, неровности дна моря и т. д. приводят к тому, что часть звуковой энергии отражается в различные стороны — рассеивается. Поэтому отражение звуковых волн от неоднородностей называется рассеянием.
Все сказанное справедливо при изучении интенсивности звуковой энергии на больших удалениях от источника звука. Для малых расстояний основная причина ослабления звука — расширение фронта волны.
При сферической волне частицы среды колеблются по фронту волны в сферической поверхности. Чем больше расстояние от источника звука, тем больше сферическая поверхность, а следовательно, больше частиц участвует в колебании. Это приводит к уменьшению амплитуды колебаний частиц, а значит, к уменьшению величины звукового давления.
Затухание звука существенно зависит от частоты. С повышением частоты увеличивается поглощение звука. Поэтому в современных гидроакустических приборах стремятся использовать низкие частоты, при которых поглощение звука уменьшается, а следовательно, и затухание будет меньше.
Как далеко слышен звук в воде?
Мы в своей повседневной жизни привыкли к восприятию звуков на различных расстояниях. Мы говорим громче или тише в зависимости от того, на каком расстоянии находится от нас собеседник. Если он находится на значительном расстоянии, то приходится повышать голос до крика.
Но существует предел дальности распространения звука в воздухе, и этот предел зависит от многих причин. В лесу, например, можно услышать звуки на большем расстоянии, чем в городе, ночью лучше слышно, чем днем. А какова дальность распространения звука в море?
Дальность распространения звука в море зависит прежде всего от того, как сильно уменьшается интенсивность звука с расстоянием. С увеличением расстояния от источника звука интенсивность звуковых колебаний уменьшается прежде всего за счет расширения фронта волны, а также за счет поглощения и рассеяния звуковой энергии.
Неоднородность среды, как уже было сказано, способствует поглощению и рассеянию звука, что приводит к затуханию звука, а следовательно, к уменьшению дальности его распространения.
Значительное влияние на дальность распространения звука оказывает рефракция. Чем больше разнородность среды, тем больше искривляется звуковой луч, тем меньше дальность распространения звука. Количество неоднородностей в воде различно и зависит от времени года, иногда даже от времени суток.
Установлено, что зимой дальность распространения звука больше, чем летом. Это происходит потому, что условия среды, т. е. распределение температуры слоев, таковы, что звуковой луч не загибается вниз ко дну, а, загибаясь вверх, распространяется вдоль поверхности.
Замечено также, что летом после большого шторма дальность распространения звука увеличивается. Объясняется это тем, что слои воды с различной температурой перемешиваются и среда становится более однородной.