А что именно известно? Смотря о каком времени идет речь. Во второй половине XIX в. было известно немало прекрасно взаимосвязанных между собой правил и понятий, по большей части удивительно удачных. Очень нелегко дались ученым эти знания. Об этом можно было бы так долго рассказывать, что мы остановимся лишь на немногих основных моментах.
Вот, например, свет. В XVII в. Ньютон создал теорию света и цвета, объясняющую все без исключения известные в то время экспериментальные данные в области оптики. Не вдаваясь в излишние подробности, можно сказать, что он считал свет потоком частиц, каждая из которых обладает определенной пульсацией, причем цвет определялся частотой пульсации. Современник Ньютона голландский физик Христиан Гюйгенс выдвинул совершенно иную теорию. Он полагал, что свет — это не поток частиц, а некоторая элементарная волна. Но так как теория Ньютона позволяла с единой точки зрения объяснить большее число явлений, то предпочтение было отдано ей.
Понимание природы света не изменилось сколько-нибудь существенно и в следующем веке. Правда, в 1799 г. английский врач и физик (позднее он стал еще и египтологом) Томас Юнг обнаружил поразительные данные, говорящие в пользу волновой теории света. Вникать в подробности нам ни к чему, однако основная идея все-таки требует внимания. По существу, Юнг доказал, что свет, падающий на свет, может создавать темноту. Например, свет от небольшого источника, проходя через две щели, образует на экране чередующиеся полосы света и тени. Каким образом при наложении света на свет получаются темные полосы? Корпускулярная теория Ньютона не могла дать этому явлению адекватное объяснение. Для волновой же теории такое объяснение не представляло никаких трудностей. Темные полосы — это те места, где налагающиеся волны погашались, ибо постоянно «шли не в ногу»; когда одна волна достигала гребня, другая была на спаде, и наоборот. Юнг назвал это волновое явление интерференцией; светлые и темные полосы стали называться интерференционными полосами.
Стоит отметить, что Юнг поддерживал сторонников волновой теории света, не дожидаясь того времени, когда с ее помощью окажется возможным объяснить все известные оптические эффекты. И как обычно это бывает, стоило только Юнгу выступить против устоявшихся представлений, — и его работа подверглась резким нападкам. Но спустя лет десять Юнг нашел страстного защитника своих идей в лице французского физика Огюстена Френеля. Тот самостоятельно пришел к идее интерференции и обнаружил новые серьезные аргументы против корпускулярной теории. Далее факты такого рода стали накапливаться с такой быстротой, что еще через десяток лет корпускулярная теория отошла в прошлое. И действительно, хотя особой нужды в coup de grâce[13] не было, однако ученые предпочитают все доводить до полной ясности. Дабы поставить точки над «i», был осуществлен решающий эксперимент по измерению скорости света в воде. В соответствии с теорией Ньютона свет должен был распространяться в воде быстрее, чем в воздухе; в соответствии же с волновой теорией — медленнее. Эксперимент показал, что скорость уменьшалась.
Но на этом дело не закончилось. Дальнейшее подтверждение волновой теории света пришло с совершенно неожиданной стороны. В 1819 г. датский физик Ханс Кристиан Эрстед обнаружил специфическую связь между электричеством и магнетизмом. Он показал, что электрический ток воздействует на магнитную стрелку компаса. Вскоре после этого французский физик Андре Мари Ампер с таким блеском провел математический и экспериментальный анализ этого явления, что его даже провозгласили Ньютоном электромагнетизма.
Тем временем выдающиеся экспериментальные открытия в области электромагнетизма сделал англичанин Майкл Фарадей. Он не получил специального образования и потому не мог столь искусно, как Ампер, применить математический аппарат для описания результатов своих экспериментов. Это обернулось большой удачей, ибо привело к революции в науке. Ампер и другие ученые сосредоточили свое внимание на том, что было доступно наблюдению, — на магнитах, проводах, по которым течет ток, прочей Аппаратуре и на измерении расстояния между ними. Таким образом, они следовали традиции, обязанной своим происхождением огромным успехам принципов механики Ньютона и закона гравитации. Эту традицию можно назвать изучением дальнодействия — действия на расстоянии. Фарадей же считал эту сторону физики второстепенной. По его мнению, самые существенные физические явления происходят в окружающем пространстве — поле, которое он в своем воображении наполнил «щупальцами». Именно эти щупальца своими «толчками» и движениями вызывают наблюдаемые электромагнитные явления. И хотя Фарадею удалось удивительно просто и точно объяснить свои эксперименты по электромагнетизму, большинство физиков — приверженцев широкого применения математики — считали представления Фарадея, не подкрепленные вычислениями, наивными.