«Принцип моноцентризма» Богданова прямо определяет, что устойчивая система «будет характеризоваться единым центром, а если она представляет из себя сложную, цепную, то она имеет один высший, общий центр»[604]. Полицентрические системы могут характеризоваться дисфункцией координационных процессов, дезорганизованностью, определенной неустойчивостью и т. д. Такого рода эффекты формируются в случае наложения одних координационных процессов на другие, что обусловливается утратой целостности.
В «законе минимума» Богданова обобщаются принципы Митчерлиха и Либиха: «Устойчивость целого будет напрямую зависеть от минимальных относительных сопротивлений каждой из его частей в любой момент»[605] и «в каждом из всех случаев, когда есть минимальные реальные различия в рамках устойчивости различных элементов системы относительно внешних воздействий, общая устойчивость системы будет определяться наименьшей ее частичной устойчивостью»[606]. Называемое также «законом наименьших относительных сопротивлений», данное положение представляет собой фиксацию проявления принципа так называемого лимитирующего фактора: скорость восстановления уровня устойчивости комплекса в ситуации нарушающего ее воздействия будет определяться минимальными частичными, а в силу того, что процессы распределяются по конкретным элементам, устойчивость систем, а также комплексов определяется устойчивостью наиболее слабого ее звена.
Ряд принципов общей теории систем принято связывать с именем психолога, кибернетика, изобретателя гомеостата (самоорганизующейся системы) Уильяма Росса Эшби и его последователей, авторов различных кибернетических теорий.
«Закон необходимого разнообразия» Эшби утверждает, что «управление может быть обеспечено только в том случае, если разнообразие средств управляющего (в данном случае всей системы управления), по крайней мере, не меньше, чем разнообразие управляемой им ситуации». Образная формулировка такого принципа определяет, что «лишь разнообразие способно уничтожить разнообразие»[607]. Вполне понятно, что рост разнообразия элементов систем как таковых приводит как к увеличению устойчивости (за счет создания обилия межэлементных связей, а также определяемых ими компенсаторных эффектов), так и к ее уменьшению (связи не могут носить межэлементный характер и приводить тем самым к диверсификации, если будут отсутствовать совместимости либо будет, например, происходить слабая механизация).
«Закон опыта» Эшби определяет действие специального эффекта, конкретным выражением которого будет являться то, что «данные, которые связаны с изменением параметра, имеют тренд к разрушению и замещению данных о начальном состоянии системы»[608]. Системная формулировка закона, которая не связывает его действие с определением информации, говорит о том, что постоянное «однородное изменение входов определенного множества преобразователей подразумевает тенденцию к снижению разнообразия такого множества»[609]. В виде множества преобразователей обычно выступает как реальное множество элементов, где влияния на вход будут синхронизированы, так и один элемент, влияние на который будет рассредоточиваться в диахроническом горизонте (в случаях когда линия его поведения получает тенденцию возврата к начальному состоянию, и таким образом он определяется как множество). Вместе с тем вторичное, дополнительное «изменение значения параметра будет делать возможным снижение разнообразия до нового, еще более низкого уровня», более того, снижение разнообразия в момент каждого изменения обнаруживает прямую зависимость от размера цепи изменений значений входного параметра. Такой эффект в рассмотрении по контрасту дает возможность наиболее полно осмыслить закон расхождения А. А. Богданова, а именно то положение, по которому «расхождение начальных форм происходит “лавинообразно”»[610], другими словами, в прямой прогрессирующей тенденции. Если в случае единообразных воздействий на большинство элементов («преобразователей») не будет происходить увеличение разнообразия проявляемых ими состояний (и оно будет сокращаться при любой смене входного параметра, т. е. силы воздействия, качественных сторон, интенсивности и др.), то к изначальным различиям уже не будут «присоединяться несходные изменения»[611]. В этом контексте становится понятным, по какой причине процессы, которые протекают в агрегате однородных единиц, обладают силой к снижению количества разнообразия состояний последних: части такого агрегата «будут находиться в постоянной связи и взаимодействии, в перманентной конъюгации, в обменном слиянии активностей. Тем самым, постольку же и будет происходить, очевидно, выравнивание развивающихся отличий между отдельными частями комплекса»[612]: однородный и однотипный состав взаимодействий единиц будет поглощать любые внешние возмущающие влияния и осуществлять распределение неравномерности по площади всего агрегата.
607
Эшби Р. У. Введение в кибернетику / пер. с англ.; под ред. В. А. Успенского; предисл. А. Н. Колмогорова. 2-е изд. М., 2005. С. 125–142.