Выбрать главу
Давление света

Лебедев впервые обнаружил давление света в эксперименте и измерил его. Опыт был необычайно трудным, в чем вряд ли убедит забавная научная игрушка, похожая на лебедевский прибор. Маленький пропеллер, накрытый стеклянным колпаком, начинает вращаться, как только включают стоящую рядом настольную лампу. Когда похожая вертушка крутится под действием ветра, никто не удивится, но тут — стеклянный колпак, не пропускающий ни малейшего дуновения воздуха. Пройти сквозь стекло может только свет, который, похоже, давит на лопасти не хуже воздушного потока. Игрушка, конечно, интересная, но неужели с такими штуками попадают в историю науки?

Но история науки еще интереснее. Английский физик Крукс — нечаянно, для других целей, — сделал первую световую вертушку, когда Лебедев еще не ходил в школу. С тех пор физики успели понять, что причина вращения вертушки — действительно свет, но не его давление. Попав под солнечные лучи, легко ощутить тепло, но никакого давления не чувствуешь. Именно это ощутимое тепло и вращает вертушку, нагревая воздух около лопастей. Теоретики подсчитали, что эти слабенькие «тепловоздушные» силы в тысячи раз больше предсказанных сил светового давления.

Давление света предсказал в 1865 году, за год до рождения Лебедева, британский физик Максвелл, придумавший электромагнитную теорию света — очень необычную по тем временам. Магнетизм, электричество и свет столь очевидно различались, что долгое время физики исследовали их порознь. О взаимосвязи электричества и магнетизма догадался Фарадей, а Максвелл воплотил догадку в точную теорию. Из нее следовало, что электромагнитные сигналы могут путешествовать без проводов и что их скорость близка к скорости света; отсюда ученый предположил, что и сам свет представляет собой электромагнитные колебания, и тогда поток света должен не только нагревать освещаемую поверхность, но и давить на нее. Максвелл вычислил это давление и обнаружил, что оно чрезвычайно мало.

Правоту Максвелла можно пояснить с помощью знаменитой формулы Е = mс2, с которой нынче знакомы даже те, кто не знает, что обозначают входящие в нее буквы, что Е — это энергия, т — масса, а с — скорость света.

Человек, бросавший когда-либо мяч, и без формул знает: чем больше масса мяча и скорость, тем сильнее толкнет мяч того, в кого попадет. Иначе говоря:

давление р — масса * скорость = тс.

(Физик уточнит это равенство словами «на единицу площади за единицу времени».)

Учитывая это, слегка перепишем знаменитую формулу:

Е = тс2 = тс*с = рс, или р = Е/с.

Значит, чтобы подсчитать световое давление р, надо энергию света разделить на скорость света — огромную величину, равную 300 тысячам километров в секунду. Поскольку делить надо на такое большое число, давление света получается очень маленьким. В этом был корень всех трудностей экспериментаторов вплоть до Лебедева.

А теоретикам трудно было уложить новые идеи в рамки тогдашних научных представлений. Британская идея электромагнитного поля, заполняющего пространство, была особенно чужеродной для германской физики, которая знала лишь заряды и силы, действующие между ними. Несколько десятилетий в науке царила неопределенность — не было оснований отвергнуть идеи Фарадея — Максвелла и не хватало духу поверить в них.

В физике самый надежный путь к вере — опыт, и как раз опыты германского ученого Генриха Герца подтвердили теорию Максвелла. Герц скептически смотрел на британские формулы, однако сумел их воплотить «в железе», а в результате убедился сам и убедил других, что электромагнитные колебания могут путешествовать без проводов, и действительно со скоростью света. Однако давление света оставалось под вопросом. В него не верил даже соотечественник Максвелла, лорд Кельвин, хотя он получил дворянство за научные заслуги в области электричества — а именно за участие в знаменитом проекте трансатлантического телеграфа.

Обнаружить световое давление могла бы вертушка Крукса, если ее как следует усовершенствовать. Прежде всего надо было удалить из-под колпака воздух, мешавший измерениям. К тому времени, когда Лебедев познакомился с проблемой, его опытные коллеги научились откачивать воздух на 99,999 процента. Однако и этого остатка было слишком много — слабенькие веяния воздуха все еще во много раз превышали силу светового давления.

И вот задело, начатое англичанами, взялся русский физик, получивший отличное немецкое образование в полуфранцузском Страсбурге. Тогда, на рубеже XX века, тридцатилетний Лебедев был в расцвете сил, и все они ему пригодились, чтобы сделать то, что не давалось многоопытному Круксу. Он придумал, как уменьшить долю остающегося под колпаком воздуха еще в 100 раз и добился наконец, чтобы помехи стали меньше светового давления. Несколько лет потребовалось на ловлю эффекта, незаметного даже для самой маленькой блохи. Кому же оказались нужны столь легковесные измерения?

В предыдущих абзацах есть искусные англичане, русский умелец и блоха — все необходимое, чтобы вспомнить знаменитый сказ Лескова о Левше. Там, однако, русские мастера подковали «аглицкую» блоху, но при этом она утратила прыгучесть. Лебедев же свою блоху подковал, чтобы она лучше прыгала. И он старался, потому что эта прыгучесть была важна для всей мировой науки. Результат его опытов, несмотря на малость измеренной им величины, отвечал на большой вопрос того времени. Вот почему доклад Лебедева о его экспериментах на Международном конгрессе физиков в Париже в августе 1900 года быстро сделал ему имя, вынудив заодно именитого Кельвина признать, наконец, электродинамику Максвелла1[1].

«Нам не дано предугадать, как слово наше отзовется…» Это наблюдение поэта в полной мере относится к истории науки. Герц не верил, что открытые им электромагнитные волны можно использовать для дальней связи. Лебедев думал, что его опыты объяснят силы между молекулами. Однако судьба полученного результата часто не зависит от намерений и надежд авторов. Через семь лет после опытов Герца родилась радиосвязь. Через пять лет после опытов Лебедева теория Максвелла нашла свое завершение в теории относительности Эйнштейна. Кратчайшим изложением теории относительности и главным ее результатом стала та самая формула Е = тс2, с помощью которой мы прояснили опыты Лебедева. Однако фактический ход событий был противоположным: опыт Лебедева, окончательно убедив физиков в правильности максвелловской электродинамики, упрочил фундамент, на котором предстояло строить и не раз перестраивать здание физики нового века.

Не слишком ли это мало для научного достижения — проверка одной теории и фундамент для других? Помимо суда истории, в науке XX века начал действовать и авторитетный людской суд. Его решения называются нобелевскими премиями и выносятся начиная с 1901 года. Свой ежегодный отбор Нобелевский комитет начинает с того, что обращается к видным ученым с просьбой назвать имена кандидатов. Уже в 1902 году такую просьбу получил Лебедев2. А в 1912 году кандидатом назвали самого Лебедева. Его имя предложил Вильгельм Вин, получивший премию предыдущего года за открытие законов теплового излучения. Кроме Лебедева Вин назвал кандидатом еще и Эйнштейна, но у русского физика шансов на успех было, пожалуй, больше. Не потому, что его вклад в науку значительнее, — просто Нобелевский комитет к теоретическим работам всегда относится с большой осторожностью, ожидая их надежного опытного подтверждения. Осторожность эта задержала Нобелевскую премию Эйнштейна до 1921 года, полтора десятилетия спустя после работ, обессмертивших его имя. А премию по физике в 1912 году получил шведский инженер Густав Дален за изобретение ацетиленовой горелки с автоматическим регулятором для освещения маяков (хотя историю физики это изобретение не осветило).

вернуться

1

Примечания и комментарии находятся в конце каждого раздела.