Выбрать главу

Осмысливая принципы, лежащие в основе теории множеств (которая может, как известно, рассматриваться в качестве фундамента современной математики), Дж. Р. Шенфилд указывает на “следующий фундаментальный вопрос: если дана совокупность S шагов, то существует ли шаг, следующий за каждым шагом из S?” [10] Рассматривая случаи, когда S состоит из единственного шага или из бесконечной последовательности шагов Sn, Si,…, он отвечает на поставленный вопрос утвердительно: “В первых двух случаях мы отчетливо можем представить себе ситуацию, когда все шаги из S уже осуществлены” [11]. Применим эти рассуждения к апории Ахилл. Ряд ½1, ½2, ½3,…, ½n,… не может быть завершен, т. к. у него отсутствует последний элемент. Но представим себе, что Ахилл уже побывал в каждой из точек, которая следует за всеми точками бесконечного ряда и является концом пути. Движение, таким образом, завершено. Проблема, однако, в том и заключается, каким образом получилось так, что Ахилл побывал во всех точках не имеющего конца ряда ½1, ½2, ½3,…, ½n,…? Если уже “дано”, то и говорить не о чем – апория разрешается, фактически, путем постулирования наличия решения [12].

Логически все это непротиворечиво (вопреки мнению самого Зенона). Но здесь процесс движения, содержащий, по условию задачи, бесконечное число шагов, сводится, по сути, к трем шагам: на шаге 1 вводится ряд точек ½1, ½2, ½3,…, ½n,…, на шаге 2 постулируется, что Ахилл побывал в каждой из этих точек, а на шаге 3 делается вывод о завершении движения в конечной точке, не принадлежащей рассматриваемому ряду. В результате как бы “пересчитан” ряд, упорядоченный по типу ω+1. По видимости речь идет о бесконечном по числу шагов процессе, тогда как на деле процесс при таком подходе завершается за три шага. Сказанное приобретает бóльшую наглядность, если обратиться к симметричной ситуации с апорией Дихотомия. Здесь вначале движущееся тело поместим в точке старта. Затем добавим к имеющейся точке старта совокупность точек, упорядоченный по типу ω*, получив тем самым линейный порядок типа 1+ω*, и, на последнем шаге, постулируем, что тело побывало в каждой из точек ряда ω*. Значит, движение успешно началось, хотя между точкой старта и любой из последующих точек лежит бесконечное множество промежуточных точек. Снова перед нами процесс из трех шагов, и снова вопрос о принципиальной возможности пересчета бесконечного порядкового типа 1+ω* обходится путем постулирования преодоления бесконечности за один шаг.

Легко представить себе совокупности, упорядоченные по типам ω+1 и 1+ω*, в качестве данностей. Но вообразить процесс пошагового получения этих совокупностей элемент за элементом, в соответствии с порядком на них, логически невозможно. Неизбежно на каком-то шаге либо а) будет нарушен порядок прохождения элементов (наряду с движениями от предыдущих точек к последующим придется вводить скачки от последующих точек к предыдущим), либо б) потребуется постулировать переход не от элемента к элементу, а от совокупности элементов к элементу или наоборот. Первая альтернатива ускользнула от внимания исследователей и потому требует особого разбора, который будет проведен в дальнейшем.

Что касается второй альтернативы, то именно она реализуется в рассмотренных псевдорешениях парадоксов движения. Между тем, в апориях Зенона движение понимается как переход от точки к точке, но ни в коем случае не как переход от совокупности точек к точке или обратно. Проблема в том, можно ли, двигаясь от одной точки пути к другой, завершить движение, и в том, можно ли, попав в какую-то точку, найти другую точку, куда нужно попасть на следующем шаге, что необходимо для начала процесса движения. Если же вместо переходов от точки к точке в процессе движения нам рекомендуют переходить от множества точек к отдельным точкам или от отдельных точек к множествам точек, то поставленная проблема подменяется другими. Кроме того, если в процессе движения мы должны посетить бесконечное количество точек, то и сам этот процесс неизбежно оказывается содержащим бесконечное число шагов. Как было показано, переходы от совокупностей точек к точкам и обратно могут совершаться за конечную последовательность шагов. Просто на одном из этих шагов обязательно будет использована бесконечная совокупность точек, введенная как актуальная данность, но не полученная в процессе поэтапного конструирования структура. В этом и заключается изъян предлагаемого разрешения апорий.

вернуться

10

Шенфилд Дж. Р. Аксиомы теории множеств // Справочная книга по математической логике. Теория множеств. М., 1982. С. 11.

вернуться

11

Там же, с. 12.

вернуться

12

Суть проблемы заключается в интеграции бесконечного количества частей, а наука – математический анализ, в частности – рассматривает только дифференциацию уже определенной, а значит, и актуализированной бесконечности: целое уже дано и остается только делить его на части; в то время как Зенон задается вопросом, а как это целое из таких частей составить (а уже потом пробовать его делить)? Получается, само решение возможно только при завершении процесса, т. е., по сути, возможно только при актуальной бесконечности. При потенциальной бесконечности, т. е. при условиях, заданных Зеноном, первые две апории (Ахилл и Дихотомия) неразрешимы. Но ведь условия, заданные Зеноном, безупречны с точки зрения логики. Посылка может быть либо ложной, либо универсальной. Ложность посылки никто не утверждает. Но если она универсальна, то вывод логически верен, ибо обратное утверждение противоречит универсальности посылки, что абсурдно. А потому утверждение, что ошибка Зенона якобы заключается в том, что предел бесконечной последовательности не является членом этой последовательности, есть не утверждение ошибки Зенона, но как раз его правоты: действительно, предела “догнал” в рассуждениях Зенона не получается. Логически все безупречно.

Впрочем, при рассмотрении проблем, связанных с апорией Ахилл и черепаха, мне однажды пришлось встретиться со следующим аргументом: “У нас в условии апории произведено деление на бесконечное число частей. Поэтому то, что мы не можем указать, на каком конечном этапе бегун догонит черепаху, не может служить основанием для утверждения о том, что он не догонит ее за бесконечное число этапов. Доказательство от противного здесь не применимо, мы не можем доказать, исходя из посылок, ни справедливость утверждения, ни справедливость отрицания. Кажущееся логичным рассуждение о том, что раз бегун не догоняет черепаху на конечном числе этапов (мы не можем указать конечный этап, на котором он ее догонит), то он не догонит ее и на бесконечном числе, является порочным кругом: доказывается ровно то утверждение, что кладется в основу”. Т. е. ставится под сомнение закон исключенного третьего, дающий основание доказательству от противного (что, кстати, само по себе уже ставит рассуждения Зенона в ряд парадоксов). Но ведь аналогичным путем в математике постулируются сходящиеся суммы: никто не может прямым путем доказать того, что они не превысят своего предела, это доказывается от противного. На каждом из этапов Ахилл не догоняет черепаху, причем число этих этапов потенциально бесконечно. А потому мы не только не можем указать конечный этап, на котором Ахилл догонит черепаху, мы знаем, что такой этап невозможен, ибо противоречит посылке. И здесь нет никакого порочного круга как логической ошибки, здесь именно “доказывается ровно то утверждение, что кладется в основу”. Circulus vitiosus как ошибка возможен при условном допущении посылки, а в апории посылка – бесспорна. При этом всякая логика тавтологична, если верна, и выводит ровно то, что в нее заложили. Т. е. мы снова возвращаемся к тому, с чего и начали: для опровержения апории необходимо опровергнуть посылку, а она-то как раз и неоспорима.

Другой небезынтересный аспект – тривиальность самой апории Ахилл и черепаха: мол, речь всегда идет о догоняющем Ахилле, а догоняющий (потенциальная бесконечность), разумеется, – и не догнал. Но, с другой стороны, если, как в математическом анализе, уже “дано” (актуальная бесконечность), то и говорить не о чем – апория разрешается, фактически, путем постулирования наличия решения. Но такое “решение” не менее тривиально рассуждений Зенона. Беда в том, что тривиальны оба варианта, и выходит, что в обоих случаях мы получаем ровно то, что постулируем. Но нетривиальность данной апории в том, что Зенон показывает невыводимость актуальной бесконечности из потенциальной. В то же самое время из опыта мы знаем, что догоняющий, если он быстрее, становится догнавшим и перегнавшим. И проблема описания движения в апории Ахилл и черепаха остается – во всяком случае, до тех пор, пока не будет постулирована дискретность пространства-времени. (Руслан Хазарзар.)