В предыстории планетарных вычислений присутствует мрачная ирония. В настоящее время крупномасштабные системы искусственного интеллекта стимулируют формы экстракции окружающей среды и данных, но, начиная с викторианской эпохи, алгоритмические вычисления возникли из желания управлять и контролировать войны, население и изменение климата.
Palaquium gutta
Историк Теодора Драйер описывает, как основатель математической статистики, английский ученый Карл Пирсон, стремился разрешить неопределенности планирования и управления путем разработки новых архитектур данных, включая стандартные отклонения и методы корреляции и регрессии. Его методы, в свою очередь, были глубоко связаны с наукой о расах, поскольку Пирсон – вместе со своим наставником, статистиком и основателем евгеники сэром Фрэнсисом Гальтоном – верил, что статистика может стать «первым шагом в исследовании возможного влияния селективного процесса на любой характер расы»[85].
Как пишет Драйер, «к концу 1930-х годов эти архитектуры данных – методы регрессии, стандартного отклонения и корреляции – стали доминирующими инструментами, используемыми для интерпретации социальной и государственной информации на мировой арене. Отслеживая узлы и маршруты мировой торговли, межвоенное „математико-статистическое движение“ стало огромным предприятием»[86]. Это предприятие продолжало расширяться после Второй мировой войны, поскольку новые вычислительные системы использовались в таких областях, как прогнозирование погоды в периоды засухи для повышения производительности крупномасштабного промышленного сельского хозяйства[87]. С этой точки зрения, алгоритмические вычисления, статистика и искусственный интеллект были разработаны в двадцатом веке для решения социальных и экологических проблем, но позже использовались для интенсификации промышленной добычи, эксплуатации и дальнейшего истощения экологических ресурсов.
Минералы – это основа искусственного интеллекта, но его жизненной силой по-прежнему является электрическая энергия. Передовые вычисления редко рассматриваются с точки зрения углеродного следа, ископаемого топлива и загрязнения окружающей среды; метафоры вроде «облака» подразумевают нечто плавающее и хрупкое в рамках естественной, зеленой индустрии[88]. Серверы спрятаны в неприметных центрах обработки данных, и их загрязняющие свойства гораздо менее заметны, чем дымящиеся трубы угольных электростанций. Технологический сектор активно рекламирует свою экологическую политику, инициативы по устойчивому развитию и планы по решению проблем, связанных с климатом, используя ИИ в качестве инструмента решения проблем. Все это является частью создаваемого общественностью имиджа устойчивой технологической индустрии без выбросов углекислого газа. В действительности же для работы вычислительных инфраструктур Amazon Web Services или Microsoft Azure требуется гигантское количество энергии, а углеродный след систем ИИ, работающих на этих платформах, постоянно растет[89].
Как пишет Тунг Хуи Ху в книге «Предыстория облака»: «Облако – это ресурсоемкая, добывающая технология, которая преобразует воду и электричество в вычислительную мощность, нанося значительный ущерб окружающей среде, которую затем вытесняет из поля зрения»[90]. Решение проблемы энергоемкой инфраструктуры стало одной из главных задач. Конечно, отрасль приложила значительные усилия, чтобы сделать центры обработки данных более энергоэффективными и увеличить использование возобновляемых источников энергии. Но уже сейчас углеродный след мировой вычислительной инфраструктуры сравнялся с углеродным следом авиационной промышленности в период ее расцвета, и он растет даже быстрее[91]. Оценки разнятся: такие исследователи, как Лотфи Белхир и Ахмед Эльмелиги, считают, что к 2040 году на долю технологического сектора придется 14 процентов глобальных выбросов парниковых газов, а группа исследователей из Швеции прогнозирует, что потребление электроэнергии одними только центрами обработки данных к 2030 году возрастет примерно в 15 раз[92].
89
See, as an example of early scholarship in this area, Ensmenger, «Computation, Materiality, and the Global Environment.»
91
Jones, «How to Stop Data Centres from Gobbling Up the World’s Electricity.» Some progress has been made toward mitigating these concerns through greater energy efficiency practices, but significant long-term challenges remain. Masanet et al., «Recalibrating Global Data Center Energy – Use Estimates.»
92
Belkhir and Elmeligi, «Assessing ICT Global Emissions Footprint»; Andrae and Edler, «On Global Electricity Usage.»