Внимательно изучив вычислительные мощности, необходимые для создания моделей ИИ, мы видим, что стремление к экспоненциальному увеличению скорости и точности обходится планете дорогой ценой. Требования к обработке данных при обучении моделей ИИ и, следовательно, их энергопотребление все еще являются новой областью исследований. Одна из первых работ в этой области была опубликована исследователем ИИ Эммой Струбелл и ее командой из Массачусетского университета в Амхерсте в 2019 году. Сфокусировавшись на попытке понять углеродный след моделей обработки естественного языка (NLP), они начали набрасывать потенциальные оценки путем запуска моделей ИИ в течение сотен тысяч вычислительных часов[93]. Первые цифры оказались поразительными. Команда Струбелл обнаружила, что запуск всего одной модели NLP приводит к выбросу более 660000 фунтов углекислого газа, что эквивалентно пяти автомобилям, работающим на газе, за весь срок их службы (включая производство), или 125 перелетам в обе стороны из Нью-Йорка в Пекин[94].
Хуже того, исследователи отметили, что такое моделирование является, как минимум, базовой оптимистичной оценкой. Она не отражает реальных коммерческих масштабов, в которых работают такие компании, как Apple и Amazon, собирающие данные в Интернете и использующие свои собственные модели NLP для того, чтобы системы ИИ, такие как Siri и Alexa, звучали более человечно. Однако точный объем энергопотребления, производимого моделями ИИ в технологическом секторе, неизвестен; эта информация хранится как строго охраняемая корпоративная тайна. И здесь экономика данных основана на сохранении экологического невежества.
В области ИИ стандартной практикой является максимизация вычислительных циклов для повышения производительности, в соответствии с убеждением, что больше – значит лучше. Как говорит Рич Саттон из DeepMind: «Методы, использующие вычисления, в конечном итоге являются наиболее эффективными, причем с большим отрывом»[95]. Вычислительная техника перебора при обучении ИИ или систематический сбор большего количества данных и использование большего количества вычислительных циклов до достижения лучшего результата, привела к резкому увеличению потребления энергии. По оценкам OpenAI, с 2012 года объем вычислений, используемых для обучения одной модели ИИ, ежегодно увеличивался в десять раз. Это связано с тем, что разработчики «постоянно находят способы использовать больше чипов параллельно и готовы платить за это экономические издержки»[96]. Мышление с точки зрения экономических издержек сужает взгляд на более широкую локальную и экологическую цену сжигания вычислительных циклов как способа создания дополнительной эффективности. Тенденция к «вычислительному максимализму» имеет глубокие экологические последствия.
Центры обработки данных являются одними из крупнейших в мире потребителей электроэнергии[97]. Для питания этой многоуровневой машины требуется электроэнергия из сети в виде угля, газа, ядерной или возобновляемой энергии. Некоторые корпорации реагируют на растущую тревогу по поводу энергопотребления крупномасштабных вычислений: Apple и Google заявляют о своей углеродной нейтральности (это означает, что они компенсируют выбросы углерода путем покупки кредитов), а Microsoft обещает стать углеродно-нейтральной к 2030 году. Однако работники этих компаний настаивают на сокращении выбросов по всем направлениям, а не на поблажках из чувства вины перед окружающей средой[98]. Более того, Microsoft, Google и Amazon лицензируют свои платформы искусственного интеллекта, инженерные кадры и инфраструктуру компаниям, добывающим ископаемое топливо, чтобы помочь им найти и добыть топливо из недр земли, что еще больше стимулирует отрасль, наиболее ответственную за антропогенное изменение климата.
За пределами Соединенных Штатов поднимаются еще большие облака углекислого газа. Китайская индустрия центров обработки данных получает 73 процента электроэнергии из угля, выбросив в 2018 году около 99 миллионов тонн CO2[99]. Ожидается, что к 2023 году потребление электроэнергии инфраструктурой китайских центров обработки данных увеличится на две трети[100]. Гринпис поднял тревогу по поводу колоссальных энергетических потребностей крупнейших технологических компаний Китая, утверждая, что «ведущие технологические компании, включая Alibaba, Tencent и GDS, должны резко увеличить объемы закупок чистой энергии и раскрыть данные об энергопотреблении»[101]. Долгосрочное воздействие угольной энергетики проявляется повсюду, превышая любые национальные границы. Планетарный характер добычи ресурсов и ее последствий выходит далеко за рамки интересов национального государства.
93
Strubell, Ganesh, and McCallum, «Energy and Policy Considerations for Deep Learning in NLP.»