The first inkling of a problem beyond the official border of the Soviet Union was picked up by a border patrol agent on the southeast border of Finland. Finland and the Soviet Union were in an unusual geopolitical relationship. One facet was a bilateral trade agreement, and Finland, coming up in the world, had also purchased a nuclear power plant from its new partner. It was a pair of new VVER-440 reactors, the Soviet version of the Westinghouse PWR, and not an RBMK. Part of the deal was that Finland had to return all the spent fuel to Russia for plutonium extraction.
Upon receiving the new power plant, the Finlanders were distressed by the poorly designed process-monitoring and control equipment in the plant, and so they redesigned and built their own replacement with some Western help. They realized that if all the Soviet reactors were built this way, eventually there would be a problem. Quietly, the government of Finland constructed a sophisticated radiation-indicator net covering the entire country.[254]
Early in the morning of April 26, the border agent noticed that the radiation instrument on his wall suddenly jumped to the red side. He picked up the phone and dialed the state department emergency number. His alarm made its way up to the highest floor, slowed by a government employees’ strike, but finally informing the Prime Minister, Kalevi Sorsa. Being a man of unusual intelligence, he decided that no news medium was to be informed, as it would irritate the Soviet Union and only cause trouble.[255] The long radioactive cloud passed overhead in Finland, stalling and depositing dust in the northern territory. Entire herds of reindeer had to be buried, and people were advised not to pick mushrooms and berries. So began the dusting of western Europe, not just with some xenon and iodine, but with examples of every fission product across a wide spectrum of potential danger, human body burden, and half-lives.[256]
Meanwhile, in the light of the new day, the damage at reactor No. 4 was painfully obvious. The brave firefighters had to admit that the old rumors about graphite fires were true. Pouring water on a serious graphite conflagration only makes it worse. The Soviet government, now fully briefed and on board, sent legions of heavy-lift helicopters to Chernobyl carrying 4,000 tons of sand, clay, lead, and boric acid, everything they could think of that would quench the still-raging fire, stop the rising column of radioactive smoke, and discourage further criticality in a semi-reactor now devoid of neutron controls. The effort eventually worked at putting out the fire, but it also put an insulating blanket over a source of heat. Before long, the heat buildup melted everything below the covering. Concrete, steel, graphite remnants, and remaining fuel melted into a flowing lava, dripping and spilling into the underground basement of the power plant. The helicopters and the men who flew them were heavily contaminated from the smoke after several trips over the crater. The helicopters had to be abandoned at a landing site, and the men had to go to Moscow for radiation-poisoning treatment. The accident was still a state secret, and no alerts were issued to anyone who was not in the immediate area.
The entire town of Pripyat had to be evacuated, population 50,000. Buses lined up for as far as the eye could see, and residents were told to bring just a toothbrush and a change of clothes. “It will only be for a few days,” they lied, “so don’t pack up your belongings.” Everyone had to be relocated, never to see Pripyat again. In all, 135,000 people were evacuated from the area, and it had to be fenced off.
The next morning, early on April 27, nuclear engineer Cliff Robinson was walking down the hallway to his office at the Forsmark Nuclear Power Station, a triple BWR plant near Uppsala, Sweden. He had eaten breakfast in the break room and was now reporting to work. There were radiation detectors all over the plant, used to make certain that no worker would accidentally walk out of the building with any radioactive contamination on his clothes. They were pre-set to low count-rate levels, just above the background level of radiation. One went off just as Robinson passed it in the hall. Startled, he stopped, lifted a foot, and scanned the bottom of it with a hand-held “hockey-puck” probe. The counter went wild.
His first thought was that World War III had broken out and someone had dropped an atomic bomb nearby. His second thought was that something had broken loose in the plant. He called his boss, who picked up the phone to alert the Swedish reactor safety authorities, who demanded that the source of the radiation leak be found immediately. A thorough search found that it was not coming from anywhere in the plant. It had come in on Robinson’s shoes. By 12:00 Universal Coordinated Time, they had determined that the source was a nuclear reactor, somewhere in western Russia. Finland agreed.
At that moment, the world became officially aware of the disaster at Chernobyl, and the Soviet Union started the long slide to oblivion. This accident was so large in scope, so nerve-rattling for everyone downwind, there was no hiding it or denying that anything had happened. Of all the firemen, emergency response workers, and power-plant personnel at Chernobyl, 127 people suffered from acute radiation poisoning, and in the first three months, 31 died. Eventually 54 deaths would be directly attributed to radiation exposure due to the destruction of the reactor, but the even larger tragedy was the spread of the pulverized contents of the reactor core. The uranium fuel was not the problem. Having 50 tons of uranium distributed over most of Europe would not noticeably change the background radiation danger or even the uranium content of the landscape. Most minerals in the ground contain trace amounts of uranium, and it tends to be evenly distributed in the Earth’s crust. Most of the exposed uranium has been washed into the ocean long ago. The transuranic nuclides, such as plutonium-239, are unnatural and dangerous, but they are a small percentage of the fuel mass.
The long-lived fission products are not the huge problem that one might expect. Much is made of the fact that fission products will be around for hundreds of thousands of years, and having them sprinkled over Europe seems disastrous. But a long half-life means low reactivity. Molybdenum-100 is a fission product that lasts a long time, but with a half-life of seven million-trillion years, it is barely alive from a radiological perspective and is hardly a threat to living things.
Nor are the short half-life fission products a problem. They are vigorously radioactive, but only for a short time. The big scare is from iodine-131, which decays with beta-minus/gamma radiation, and it is sought by the human body for use in the thyroid gland. However, with a half-life of only 8.023 days, its concentration in the environment decreases rapidly, and it is essentially gone after 80 days.
The big problem is in the middle ground, between the long-lived and the short-lived radioactive species. Strontium-90, for example, is chemically similar to calcium, and the human body seeks it for bone replacement. It has a half-life of 28.8 years, making it active enough to be very dangerous with a lifetime of several generations. The same is true of cesium-137, with a half-life of 30.07 years.
254
Countries that have nuclear power plants are by now equipped with networks of fixed radiation detectors feeding into central monitoring stations using Internet connectivity. The radiation-monitoring network in the United States, named RadNet, is operated by the Environmental Protection Agency. If you have been on top of a building lately, you may have noticed an innocuous metal box standing on a short pedestal. That is the radiation detector and data transmitter. In Japan, the similar system is named SPEEDI.
255
Is this account of the first radiation fall from Chernobyl believable? Maybe. It was given to me by a very reliable source, but the monitoring station was about 760 miles away from the No. 4 reactor. The vanguard of the radioactive dust release would have to have traveled at 100 miles per hour to get there early on April 26. It is not impossible, as the radiation cloud very quickly reached 36,000 feet, which would put it at jet-stream altitude, where the wind blows at 100 miles per hour. The jet stream usually blows east to west, and Finland is north-northwest of Chernobyl, but the jet stream is capable of north-south looping. Officially, Finland discovered a radioactive dust-drop at exactly the same time it was noticed in Sweden, thus absolving Finland of any independent whistle-blowing. Later, the stream turned east-west and laid down a swath of radioactive dust nearly 1,000 miles long across the southern Soviet Union.