Выбрать главу

СМИ постоянно путают эти две вещи — связанность и обусловленность, тем самым создавая неразбериху. Одно дело быть связанным с заболеванием, и совсем другое — обусловливать его, то есть служить причиной и осуществлять направленное, управляющее воздействие.

Если я покажу вам ключ зажигания и скажу, что он имеет отношение к управлению автомобилем, вы, вероятно, согласитесь со мной. В самом деле — без этого ключа я не смогу включить зажигание и, значит, мое заявление в каком-то смысле верно. Но можно ли сказать, что этот ключ автомобилем «управляет»? Будь это так, вы не рискнули бы, выходя из машины, оставлять его в замке зажигания — из опасения, что он, чего доброго, одолжит ее у вас и уедет. Ключ зажигания связан с управлением автомобилем; управляет же им человек, который этот ключ поворачивает. Определенные гены связаны с теми или иными паттернами поведения организма и его характеристиками — но эти гены не активируются, пока что-то не приведет их в действие.

Но что приводит в действие гены? Достаточно тонкий и откровенный ответ на этот вопрос дал в 1990 году Фредерик Ниджхаут в статье, озаглавлен­ной «Метафоры и роль генов в развитии организмов» [Nijhout 1990]. По словам Ниджхаута, идея, будто гены управляют всем живым, высказывалась так часто и долго, что ученые забыли о том, что это всего лишь гипотеза, но никак не установленная истина. В действительности же научные исследования последнего времени данную гипотезу скорее опровергают. Всевластие генов, пишет Ниджхаут, это популярная в нашем обществе метафора. Нам хочется верить, что генные инженеры — новые волшебники, способные лечить болезни и между делом конструировать новых Эйнштейнов и Моцартов. Но метафора — отнюдь не то же самое, что научная истина. Вывод, к которому приходит Ниджхаут, таков: «Когда в гене возникает необходимость, его экспрессию* активирует сигнал, поступающий из окружающей среды, а вовсе не какая-то там спонтанно возникшая характеристика самого гена». После этих слов остается еще раз обратиться к тем, кто считает, что нами управляют гены: «Это же среда, тупицы!»

Белок: стройматериал живого

Чтобы уяснить, почему восторжествовала метафора всевластия генов, нужно разобраться, как понимают ДНК те, кто их с таким рвением изучают.

В свое время химики-органики установили, что клетки состоят из очень крупных молекул четырех типов: полисахаридов (сложных сахаров), липидов (жиров), нуклеиновых кислот (ДНК и РНК) и белков. И хотя клетке необходимы все эти четыре типа молекул, наиболее важным их компонентом является белок. По существу, клетки представляют собой сооружения из ста тысяч белковых «кирпичей». И один из способов описания наших состоящих из триллионов клеток тел — представить их в виде белковых машин (надеюсь, вы уже поняли, что лично я считаю нас чем-то большим, нежели машины!).

Давайте присмотримся к тому, как соединены друг с другом в наших клетках эти сто с лишним тысяч белков. Каждый белок представляет собой линейную цепочку связанных друг с другом молекул нуклеиновых кислот наподобие игрушечного детского ожерелья на втулках (см. рисунок).

«Бусины» в «ожерелье» белка — это молекулы одной из двадцати используемых клетками аминокислот. По правде говоря, при всей своей наглядности, аналогия с ожерельем не совсем верна, поскольку молекула каждой аминокислоты несколько отличается по форме. Так что ради точности нам придется сказать, что наше ожерелье помяли на фабрике.

А если быть еще более точным, следует принять во внимание то, что аминокислотный остов клеточного белка гораздо мягче и податливей детского игрушечного ожерелья, которое распадается, если его чересчур сильно перегнуть. Скажем так: структура аминокислотных цепочек в белках напоминает позвоночник змеи, позволяющий ей и вытягиваться в струну, и сворачиваться в клубок.

Благодаря гибким сочленениям (пептидным связям) между аминокислотами в белковой «змейке» белки могут принимать множество форм. То, какую из них примет такая «змейка», определяется преимущественно двумя факторами. Первый фактор — физическая структура белка, обусловленная последовательностью составляющих его бусинок-аминокислот (которые, как уже было сказано выше, немного отличаются друг от друга по форме). Второй фактор — взаимодействие положительных и отрицательных электрических зарядов на концах связанных друг с другом аминокислот. Благодаря такому взаимодействию, аминокислоты ведут себя как магниты. Одноименные заряды заставляют их отталкиваться друг от друга, в то время как разноименные — притягиваться. Как показано на рисунке вверху, гибкий остов белковой цепи легко принимает ту или иную форму, когда его аминокислотные «позвонки» поворачиваются и изгибают соединяющие их сочленения, чтобы уравновесить силы, возникающие из-за имеющихся положительных и отрицательных зарядов.

вернуться

* Экспрессия гена — совокупность молекулярных процессов, ведущих к синтезу того или иного химического вещества на основании информации, закодированной в этом гене.