Выбрать главу

В этой главе я собираюсь рассказать о том, как струнные теоретики подошли к этому подсчету и как по ходу дела они получили надежное квантово-механическое обоснование энтропии Бекенштейна — Хокинга — обоснование, которое не оставляло места для потери информации. Это было крупное достижение, которое сильно продвинуло нас на пути подрыва утверждения Стивена о бесконечном количестве информации, которое способна проглотить черная дыра.

Но прежде позвольте мне объяснить, на какой точке зрения изначально стоял Герард 'т Хоофт.

Догадка 'т Хоофта

Существует множество различных элементарных частиц, и, я думаю, надо честно признать, что физики не в полной мере понимают, чем одни из них отличаются от других. Но и не Задаваясь глубокими вопросами, мы можем сделать эмпирический обзор всех частиц, существование которых либо уже подтверждено экспериментально, либо предсказывается из теоретических соображений. Один из способов все их отобразить состоит в нанесении их на ось и создании своего рода спектра элементарных частиц. Будем откладывать по горизонтальной оси массу (не в масштабе), поместив слева самые легкие объекты, а вправо масса будет увеличиваться. Вертикальные черточки отмечают отдельные частицы.

На нижнем (левом) краю располагаются все знакомые нам частицы, существование которых не вызывает сомнений. Две из них не имеют массы и движутся со скоростью света — фотон и гравитон. Затем идут различные типы нейтрино, электрон, некоторые кварки, мю-лептон, еще кварки, W-бозон, Z-бозон, бозон Хиггса и тау-лептон. Названия и подробности не имеют большого значения.

На несколько больших значениях массы располагается целая коллекция частиц, существование которых лишь предполагается, но физики в большинстве своем (включая и меня) считают, что они действительно есть[139]. По причинам, которые здесь для нас не имеют значения, эти гипотетические частицы называются суперпартнерами. За суперпартнерами находится большой интервал, который я пометил вопросительными знаками. Нельзя сказать, что мы знаем, что там ничего нет; у нас просто нет особых причин постулировать существование частиц в этой области. Также ни один из построенных или даже рассматриваемых ускорителей не обладает мощностью, достаточной для создания частиц с такой большой массой. Так что этот интервал есть терра инкогнита.

Затем с массами намного больше, чем у суперпартнеров, идут частицы Великого объединения. Они тоже гипотетические, но есть очень серьезные основания верить в их существование — по моему мнению, даже более серьезные, чем в случае суперпартнеров, — но их открытие в лучшем случае будет косвенным.

Самые неоднозначные частицы на моей диаграмме — это возбужденные струны. Согласно теории струн, это очень тяжелые вращающиеся и вибрирующие возбужденные состояния обычных частиц. Затем, на самом верху, мы помещаем платовскую массу. До начала 1990-х годов большинство физиков ожидало, что планковская масса завершает спектр масс элементарных частиц. Но у Герарда ’т Хоофта была иная точка зрения. Он доказывал, что наверняка должны быть объекты с большей массой. Планковская масса кажется огромной в масштабе масс электрона и кварков, но она сопоставима с массой пылинки. Очевидно, что существуют вещи и потяжелее, скажем, шар для боулинга, паровоз или рождественский пирог. Но выделяются среди таких тяжелых объектов те, которые имеют наименьшие размеры при данной массе.

Возьмем обычный кирпич. Он весит около килограмма. Мы говорим «твердый, как кирпич». Но кирпичи, которые кажутся нам твердыми, — это почти полностью пустое пространство. Приложите к ним достаточно большое давление, и их можно сжать до значительно меньшего размера. Если давление в самом деле велико, кирпич может уменьшиться до размеров булавочной головки или даже вируса. И даже тогда это будет в основном пустое пространство.

Но есть предел. Я имею в виду не практический предел, связанный с ограничениями современной технологии. Я говорю о законах природы и фундаментальных физических принципах. Каков диаметр наименьшей области, которую может занимать объект массой в один килограмм? Сразу вспоминается планковский размер, но это неправильный ответ. Объект можно сжимать, пока он не станет черной дырой с массой в один килограмм[140], но не дальше, — это самый компактный объект данной массы.

Какого же размера будет однокилограммовая черная дыра? Ответ, вероятно, окажется меньше, чем вы ожидаете. Шварцшильдовский радиус (радиус горизонта) такой черной дыры составляет около одного миллиона планковских длин. Может показаться, что это много, но в действительности это в триллион раз меньше одиночного протона. Такая черная дыра будет столь же мала, как элементарная частица, так почему нам не признать ее таковой?

'т Хоофт так и поступил. Или, по крайней мере, он сказал, что — нет важных проявлений, в которых такой объект фундаментально отличался бы от элементарной частицы.

Спектр элементарных частиц не обрывается на платовской массе. Он продолжается до бесконечно больших масс в форме черных дыр.

т Хоофт также доказывал, что черные дыры не могут иметь произвольную массу: подобно обычным частицам, им доступен лишь определенный дискретный набор масс. Однако при массах больше планковской они распределены настолько плотно, что совершенно сливаются[141].

Переход от обычных частиц (или возбужденных струн) к черным дырам не столь резкий, как я изобразил на рисунке. Скорее всего, спектр возбужденных струн переходит в спектр черных дыр без отчетливой границы вблизи планковской массы. Это было предположение ’т Хоофта, и, как мы увидим, есть убедительные причины в него верить.

Обсчитывая струны и черные дыры

Алисин аэроплан — это метафора того, как внешний вид зависит от зрителя. Алиса, сидя в кокпите, не видит на горизонте ничего удивительного. Но если смотреть извне черной дыры, кажется, что у аэроплана становится все больше и больше пропеллеров, которые постепенно охватывают весь горизонт. Алисин аэроплан также служит метафорой того, как работает теория струн. Когда струна падает к горизонту, внешний наблюдатель будет видеть, как материализуется все больше и больше фрагментов струны, которые постепенно заполняют горизонт.

Наличие энтропии у черных дыр предполагает, что у них есть скрытая микроскопическая структура, подобно молекулам в ванне теплой воды. Но само по себе существование энтропии не дает никакого намека на природу «атомов горизонта», хотя и позволяет грубо оценить их количество.

В Алисином мире атомы горизонта — это пропеллеры. Возможно, и в самом деле существует теория квантовой гравитации, основанная на пропеллерах, но, я думаю, что на эту роль больше подходит теория струн, по крайней мере сегодня.

Идея о том, что струны имеют энтропию, возвращает нас к самым ранним дням теории струн. Подробности сильно математизированы, но общую идею понять легко. Начнем с простейшей струны, представляющей элементарную частицу определенной энергии. Для определенности пусть это будет фотон. Присутствие (или отсутствие) фотона — это один бит информации.

А теперь давайте что-нибудь сделаем с фотоном, предполагая, что он действительно является крошечной струной: встряхнем его, или ударим другой струной, или просто положим на горячую сковородку[142]. Подобно небольшому резиновому кольцу, он начнет вибрировать, вращаться и растягиваться. Если добавлено достаточно энергии, получается огромная запутанная мешанина — клубок шерсти, с которым поиграла кошка. Это не квантовая, а тепловая дрожь.

вернуться

139

Мы узнаем об этом в ближайшие годы, когда заработает в полную силу европейский ускоритель БАК (Большой адронный коллайдер).

вернуться

140

Здесь есть техническая тонкость. Сжатие кирпича или другого объекта увеличивает его энергию, а поскольку E = mc2, то увеличивается также и его масса. Но этот прирост можно компенсировать разными способами. Наша задача — получить наименьший возможный однокилограммовый объект.

вернуться

141

Почему так плотно? Это энтропия. С увеличением массы площадь горизонта увеличивается; поэтому энтропия черной дыры тоже растет. Но не забывайте: энтропия означает скрытую информацию. Когда мы говорим, что масса черной дыры составляет один килограмм, мы в действительности имеем в виду примерно один килограмм. Более точно было бы сказать, что масса составляет один килограмм с некоторой погрешностью. Если существует много возможных черных дыр с массами в пределах этой погрешности, то много информации остается за рамками нашего описания. Эта отсутствующая информация и есть энтропия черной дыры. Зная, что энтропия черной дыры растет с массой, 'т Хоофт заключил, что спектр масс черных дыр должен становиться очень плотным и размазываться.

вернуться

142

И поднимем температуру до 1023 градусов Кельвина.