Выбрать главу

Прекращение испарения черных дыр — достойная причина для изучения физики внутри шкатулки. Но идея мира в шкатулке гораздо интереснее. Подлинная цель состоит в понимании голографического принципа и доведении его до математической точности. Вот как я объяснял голографический принцип в главе 18: «Трехмерный мир нашего обыденного опыта — Вселенная, заполненная галактиками, звездами, планетами, домами, камнями и людьми, — это голограмма, образ реальности, закодированной на далекой двумерной поверхности. Этот новый закон физики, называемый голографическим принципом, утверждает, что всё, находящееся внутри некоторой области пространства, можно описать посредством битов информации, расположенных на ее границе».

Отчасти неточность формулирования голографического принципа связана с тем, что предметы могут проходить через границу. В конце концов, это ведь воображаемая математическая поверхность безо всякой реальной материи. Сама возможность для объектов входить в рассматриваемую область и покидать ее затуманивает смысл слов «всё, находящееся внутри некоторой области пространства, можно описать посредством битов информации, расположенных на ее границе». Но мир в шкатулке с идеально непроницаемыми стенами избавлен от этой проблемы. Новая формулировка будет такой:

Всё, находящееся внутри шкатулки с непроницаемыми стенами, можно описать посредством битов информации, хранящихся в пикселах на ее стенах.

Во время чилийской автобусной экскурсии 1989 года я не понял, почему Клаудио Тейтельбойм так восхищался антидеситтеровским пространством. Черные дыры в шкатулке — ну и что? Мне понадобилось восемь лет, чтобы уловить суть, — восемь лет и еще один южноамериканский физик, на этот раз аргентинский.

Удивительные открытия Малдасены

Хуан Малдасена — полная противоположность Клаудио Тейтельбойму. Он невысок и гораздо хладнокровнее. Я не могу себе представить его гоняющим на автомобиле по Сантьяго в поддельной военной форме. Но как у физика у него нет недостатка в храбрости. В 1977 году он поставил себя под удар, сделав невероятно смелое заявление, которое казалось почти таким же сумасшедшим, как моя дикая поездка с Клаудио. Фактически Малдасена доказывал, что два математических мира, которые кажутся совершенно непохожими, на самом деле являются в точности и одним и тем же. Один мир имел четыре пространственных измерения и одно временное (4 + 1), другой был (3 + 1) — мерным и больше напоминал мир нашего повседневного опыта. Я возьму на себя смелость упростить эту историю, с тем чтобы ее было проще визуализировать, и в каждом случае уменьшу количество измерений на одно. Поэтому я буду говорить, что некоторая воображаемая версия Флэтландии — (2 + 1) — мерного мира — в определенном смысле эквивалентна антидесситтеровскому миру с (3 + 1) измерениями.

Как такое вообще возможно? Самое явное свойство пространства — это количество его измерений. Неспособность распознавать размерность пространства означала бы крайне опасную степень нарушения восприятия. Безусловно, нельзя перепутать два измерения с тремя, находясь в здравом уме. По крайней мере, так кажется. Путь, который привел Малдасену к его открытию, был запутанной и извилистой тропинкой, которая проходила через экстремальные черные дыры, D-браны и нечто, называемое матричной теорией[150], и в конце приводила к голографическому принципу.

Отправной точкой были D-браны Полчински. Напомню, что D-брана — это материальный объект, который в зависимости от размерности может быть точкой, линией, поверхностью или объемом, заполняющим пространство. Главное свойство, отличающее D-браны от всего остального, состоит в том, что на них могут заканчиваться фундаментальные струны. Для определенности давайте сосредоточимся на D2-бpaнax[151]. Представьте себе плоскую двумерную поверхность, плавающую в трехмерном пространстве, подобно магическому паркету. Открытые струны могут присоединяться к этой D-бране обоими своими концами. Они способны скользить вдоль D-браны, но не могут свободно перепрыгивать в третье измерение. Кусочки струн, словно на коньках без трения, катятся по метафорическому льду, будучи неспособным оторвать от него ноги. Издали каждый кусочек струны выглядит как частица, движущаяся в двумерном мире. Если струн больше одной, они могут сталкиваться, рассеиваться друг на друге и даже сливаться в более сложные объекты.

D-браны могут существовать по отдельности, но они липкие. Если аккуратно их сблизить, они сцепятся и образуют составную брану из нескольких слоев, как на следующем рисунке.

Я нарисовал D-браны на некотором расстоянии друг от друга. Но когда они сливаются, промежуток исчезает. Группу слипшихся вместе D-бран называют D-бранной стопкой.

Свойства открытых струн, движущихся по D-бранной стопке, богаче и разнообразнее, чем у струн, движущихся по одиночной D-бране. Два конца струны могут присоединиться к разным элементам стопки, как если бы два конька двигались по двум немного разным уровням. Чтобы различать браны, им можно дать имена. Например, в нарисованной выше стопке можно назвать браны красной, зеленой и синей.

Концы струн, которые катятся по D-бранной стопке, должны быть всегда присоединены к D-бране. Например, струна может быть обоими концами присоединена к красной бране. Тогда это будет красно-красная струна. Аналогично могут быть сине-синие и зелено-зеленые струны. Но возможно также, что два конца струны присоединены к разным бранам. Так получаются красно-зеленые струны, красно-синие и т. д. Всего имеется девять разных возможностей для движения струн по этой D-бранной стопке.

Интересные вещи начинаются, когда к бранам присоединено несколько струн.

Струны на Б2-бранной стопке очень похожи на обычные частицы, но только в мире, имеющем два пространственных измерения. Они взаимодействуют друг с другом, рассеиваются при столкновениях и оказывают силовое воздействие на находящиеся поблизости струны. Одна струна может распасться на две. На следующей серии рисунков показано, как струна на одиночной бране разделяется и превращается в две струны.

Точка на исходной струне соприкасается с браной, что позволяет струне разделиться, но непременно так, чтобы все концы были присоединены к бранам. Предыдущий рисунок можно также просматривать снизу вверх, и тогда получится, что пара струн сливается и образует одну.

А вот последовательность кадров со струнами на стопке из трех D-бран. Здесь показано, как красно-зеленая струна сталкивается с зелено-синей. Две струны сливаются и образуют одну красносинюю струну.

Красно-красная струна не может слиться с зелено-зеленой, поскольку их концы никогда не соприкоснутся.

Не правда ли, мы уже видели нечто подобное? Ну конечно, если вы прочли главу 19. Правила, управляющие поведением струн, присоединенных к стопке D-бран, в точности такие же, что управляют глюонами в квантовой хромодинамике (КХД). В главе 19 я объяснял, что глюон подобен небольшому линейному магниту с двумя концами, каждый из которых помечен своим цветом. Сходство на этом не заканчивается. Приведенный выше рисунок, показывающий соединение двух струн в одну, очень похож на диаграмму глюонного узла в КХД.

Эта параллель между «физикой на D-бране» и обычным миром элементарных частиц — замечательный факт, который, как мы увидим в следующей главе, оказался чрезвычайно полезным. Когда физики находят два разных способа описания одной системы, они называют такие два описания «дуальными». Пример тому дуальное описание света как волн или частиц. Физика полна дуальностей, и не было ничего особенно неожиданного или нового в самом факте, что Малдасена открыл два дуальных описания струн на D-бране. Что было новым, почти неслыханным[152], так это то, что эти две картины описывали миры с разным числом пространственных измерений.

Я уже намекал на одно такое описание: (2-1-1) — мерная флэтландская версия КХД. Она описывает плоские протоны, мезоны и глюболы, но, как и настоящая КХД, не содержит и следа гравитации. Другая сторона этой дуальности — альтернативного способа представления одних и тех же вещей — описывает мир трехмерного пространства, причем не любого, а именно антидесситтеровского. Малдасена доказал, что флэтландская КХД дуальна (3 + 1) — мерной антидесситтеровской вселенной. Более того, в этом трехмерном мире материя и энергия служат источником гравитационных сил, так же как и в реальном мире. Другими словами, мир (2 + 1) измерений, включающий КХД, но без гравитации, эквивалентен вселенной с (3 + 1) измерением и гравитацией.

вернуться

150

Матричная теория в этом контексте не имеет ничего общего с S-матрицей. Это теория предшествовала открытию Малдасены и была с ним тесно связана, и она тоже включала загадочный рост размерностей. Это был первый пример математической связи, подтверждающий голографический принцип. Матричная теория была открыта Томом Бэнксом, Вилли Фишлером, Стивом Шейкером и мной в 1996 году.

вернуться

151

В своей оригинальной работе Малдасена концентрировался на случае с четырехмерным пространством. Его можно назвать (4 + 1) — мерным АДС. Причина выбора четырехмерного пространства вместо обычных трех измерений — чисто техническая и не важна для этой главы. Но она имеет отношение к части эпилога.

вернуться

152

Почти неслыханным, но не совсем. Матричная теория дает более ранний подобный пример.