Google Переводчик работает хорошо не потому, что в его основе заложен более разумный алгоритм. Как это было у Банко и Брилла из корпорации Microsoft, причина тому — большее количество входящих данных (но не всех подряд). Так, например, компании Google удалось использовать в десятки тысяч раз больше данных, чем системе Candide компании IBM. И все потому, что в Google принимались беспорядочные данные. Корпус из триллиона слов, выпущенный Google в 2006 году, состоял из разбросанных фрагментов интернет-контента. Он стал «обучающим набором», по которому вычислялась вероятность того, что именно последует за тем или иным английским словом. Это был огромный шаг вперед, в корне отличающийся от предшественника — знаменитого Брауновского корпуса с миллионом английских слов, созданного в 1960-х годах. Благодаря более объемным наборам данных развитие обработки естественного языка шло семимильными шагами. На нем были основаны как системы распознавания голоса, так и системы компьютерного перевода. «Простые модели с множеством данных по результатам превосходят более сложные модели, основанные на меньшем количестве данных», — отметил Питер Норвиг, гуру искусственного интеллекта в компании Google, в статье «Необоснованная эффективность данных», написанной в соавторстве с коллегами.[49]
Однако, как поясняют Норвиг и его коллеги, ключевым элементом была беспорядочность: «В некотором смысле этот корпус — шаг назад по сравнению с Брауновским корпусом, ведь его данные взяты с неотфильтрованных веб-страниц, а значит, содержат неполные предложения, а также орфографические, грамматические и прочие ошибки. Такой корпус не имеет примечаний с добавленными вручную пометками частей речи. Но то, что он в миллион раз больше Брауновского корпуса, перевешивает эти недостатки».
Больше данных — лучше результат
Аналитикам, которые работают с обычными выборками, трудно свыкнуться с беспорядочностью, которую они всю жизнь стремились предотвратить или искоренить. Статистики используют целый комплекс стратегий в целях снижения частоты появления ошибок при сборе выборок, а также для проверки выборок на наличие потенциальных систематических ошибок перед объявлением результатов. Этот комплекс стратегий включает в себя сбор выборок, который осуществляется специально обученными специалистами в соответствии с точным протоколом. Реализация стратегий, направленных на сокращение числа ошибок, — дорогостоящее удовольствие, даже при ограниченном количестве точек данных. Что немаловажно, эти стратегии становятся невозможными в случае сбора данных в полном объеме — не только из-за чрезмерной стоимости, но и потому, что при таком масштабе вряд ли удастся равномерно соблюсти строгие стандарты сбора. И даже исключение человеческого фактора не решило бы проблему.
Двигаясь в сторону больших данных, мы будем вынуждены изменить свое представление о преимуществах точности. Пытаясь мыслить привычными категориями измерений в цифровом взаимосвязанном мире ХХІ века, мы упускаем важный момент. Одержимость точностью — не более чем артефакт аналогового мира, находящегося в информационной изоляции, где данные поистине были редкостью. На тот момент измерение каждой точки данных было крайне важно для результата, поэтому большое внимание уделялось тому, чтобы не допускать в анализе систематические погрешности.
В наше время нет такого дефицита информации. При переходе на всеобъемлющие наборы данных, которые охватывают всё или почти всё рассматриваемое явление, а не только его мизерную часть, нам уже не приходится беспокоиться об отдельных точках данных, привносящих в анализ систематические погрешности. Вместо того чтобы искоренять каждый неточный бит (что со временем обходится все дороже), мы выполняем вычисления, принимая во внимание беспорядочность.
Возьмем для примера беспроводные датчики, внедряемые на производстве. По всей территории нефтеперерабатывающего завода BP Cherry Point в Блейне (Вашингтон) расставлены беспроводные датчики, образующие невидимую сеть, которая производит огромные объемы данных в режиме реального времени. Неблагоприятные окружающие условия — сильная жара и электрические механизмы — могут время от времени искажать показания, приводя к беспорядочности данных. Но огромное количество поступающей информации компенсирует эти трудности. Измеряя нагрузку на трубы непрерывно, а не через определенные промежутки времени, компания BP выяснила, что некоторые виды сырой нефти более едкие, чем другие. Прежде это не удавалось определить, а значит, и предотвратить.[50]
49
Цитата из статьи Норвига: Halevy, A. The Unreasonable Effectiveness of Data / A. Halevy, P. Norvig, and F. Pereira // IEEE Intelligent Systems. — Mar./Apr., 2009. — P. 8–12. Обратите внимание, что ее название — вариация на тему знаменитой статьи Юджина Вигнера The Unreasonable Effectiveness of Mathematics in the Natural Sciences, в которой он рассматривает, почему физику можно аккуратно выразить в математических формулах, но они плохо годятся для гуманитарных наук. См.: Wigner, E. The Unreasonable Effectiveness of Mathematics in the Natural Sciences // Comm. Pure and Applied Mathematics. — 1960. — Vol. 13, no. 1. — P. 1–14.
50
Коррозия труб и враждебная среда связи в компании BP: Clarabut, Jaclyn. Operations Making Sense of Corrosion // BP Magazine. — 2011. — Issue 2. URL: http://www.bp.com/liveassets/bp_internet/globalbp/ globalbp_uk_english/reports_and_publications/ bp_magazine/STAGING/local_assets/pdf/BP_Magazine_2011_issue2_text.pdf.