Глава 2
Оптимизация
В начале 2000-х заторы на улицах Стокгольма достигли критического уровня.
Поездки на работу и обратно стали гораздо длительнее; из-за опозданий и нервотрепок накапливалось раздражение. В часы пик продуктивность шведской столицы резко падала. Выход казался очевидным – повысить пропускную способность за счет строительства еще одного моста. Эта стратегия уже успела себя зарекомендовать: в Стокгольме насчитывались десятки мостов; в конце концов, не зря же его называли «северной Венецией». Но, поразмыслив, городские власти приняли необычное решение: обратились к группе инженеров-консультантов из IBM.
В IBM подошли к проекту как к спасательной миссии, а не «ангиопластике»[2] транспортных артерий Стокгольма. Чтобы более детально ознакомиться с проблемой, команда из IBM решила установить по городу устройства для отслеживания дорожного движения. В IBM использовали 430 тыс. приемопередатчиков, собиравших данные, и накопили 850 тыс. фотографий. На основе этой информации в компании создали общую системную модель, проведя математический анализ всего трафика движения транспорта и, казалось бы, не связанных с ним «узких мест». Результаты этой кропотливой работы убедили чиновников города, что, вместо того чтобы строить новые мосты или дороги, нужно брать плату за проезд по уже существующим мостам и шоссе в часы пик.
Введение платы за въезд дало поразительные результаты. В испытательный период системы в 2006 году дорожные пробки в Стокгольме сократились на 20–25 %. Время ожидания людей в течение поездок уменьшилось в среднем на треть – даже почти наполовину, а общественный транспорт снова завоевал популярность. Этот план помог убрать с дорог 100 тыс. машин. Уровень выбросов углекислого газа и твердых частиц резко сократился. В 2007 году в Стокгольме провели референдум, по результатам которого ввели плату за въезд на постоянной основе с использованием фотокамер. Успех шведского эксперимента привлек внимание, и города в Азии, Европе и Северной Америке начали рассматривать возможность перенять данный опыт и ввести плату за въезд в особо загруженные районы.
Места, где образуются дорожные пробки, сродни дырявым ведрам: чем больше в них льешь, тем сильнее они протекают. Кроме того, пропускная способность дорог – величина постоянная, так что появление дополнительных машин в часы пик представляет собой почти непреодолимое препятствие.
Техасский институт транспорта недавно выпустил отчет о дорожном движении в городах. В нем отмечалось, что ежегодные выбросы углекислого газа в мегаполисах США в часы пик превышают 25 млн т и «эквивалентны стартовой массе более чем 12 400 космических шаттлов с полными топливными баками». Эти выбросы – результат потребления более 11 млрд л топлива, количества, которое «могло бы заполнить четыре таких стадиона, как “Супердом” в Новом Орлеане».
На индивидуальном уровне эти цифры впечатляют. За последние 30 лет персональные издержки среднестатистического человека, который ездит на работу и обратно, возросли более чем вдвое, как и количество впустую истраченного топлива. Как отмечено в отчете, люди, регулярно совершающие подобные поездки, «в 2011 году провели в пути лишние 38 часов по сравнению с 16 часами в 1982-м». А это соответствует потере пяти рабочих дней.
«Сегодня в нашем распоряжении огромное количество установленных на дорогах сенсоров и камер, с которых автоматически загружаются данные, позволяющие совместно использовать и анализировать информацию практически в реальном времени», – пишет Навин Ламба, возглавляющий в IBM глобальное направление продуктов Intelligent Transportation. Сенсоры и приемопередатчики, на данные от которых в IBM опирались при проведении анализов, оказались незаменимыми помощниками при составлении карт дорожного движения. «Когда данным уже 5–7 минут, становится поздно вносить какие-то изменения, которые сократили бы заторы, – добавляет Ламба. – Если едущий застрял в пробке, уже не имеет смысла искать альтернативный маршрут». Прогнозирование спроса на перевозки является дополнительным вызовом; тут часто недостаточно даже данных в реальном времени.