Выбрать главу

* that, but it does mean we need to increment the

* module's reference count. */

int module_open(struct inode *inode, struct file *file) {

 MOD_INC_USE_COUNT;

 return 0;

}

/* The file is closed - again, interesting only because of the reference count. */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

int module_close(struct inode *inode, struct file *file)

#else

void module_close(struct inode *inode, struct file *file)

#endif

{

 MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

 return 0; /* success */

#endif

}

/* Structures to register as the /proc file, with

* pointers to all the relevant functions. ********** */

/* File operations for our proc file. This is where we

* place pointers to all the functions called when

* somebody tries to do something to our file. NULL

* means we don't want to deal with something. */

static struct file_operations File_Ops_4_Our_Proc_File = {

 NULL, /* lseek */

 module_output, /* "read" from the file */

 module_input, /* "write" to the file */

 NULL, /* readdir */

 NULL, /* select */

 NULL, /* ioctl */

 NULL, /* mmap */

 module_open, /* Somebody opened the file */

 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

 NULL, /* flush, added here in version 2.2 */

#endif

 module_close, /* Somebody closed the file */

 /* etc. etc. etc. (they are all given in

 * /usr/include/linux/fs.h). Since we don't put

 * anything here, the system will keep the default

 * data, which in Unix is zeros (NULLs when taken as pointers). */

};

/* Inode operations for our proc file. We need it so

* we'll have some place to specify the file operations

* structure we want to use, and the function we use for

* permissions. It's also possible to specify functions

* to be called for anything else which could be done to

* an inode (although we don't bother, we just put NULL). */

static struct inode_operations Inode_Ops_4_Our_Proc_File = {

 &File_Ops_4_Our_Proc_File,

 NULL, /* create */

 NULL, /* lookup */

 NULL, /* link */

 NULL, /* unlink */

 NULL, /* symlink */

 NULL, /* mkdir */

 NULL, /* rmdir */

 NULL, /* mknod */

 NULL, /* rename */

 NULL, /* readlink */

 NULL, /* follow_link */

 NULL, /* readpage */

 NULL, /* writepage */

 NULL, /* bmap */

 NULL, /* truncate */

 module_permission /* check for permissions */

};

/* Directory entry */

static struct proc_dir_entry Our_Proc_File = {

 0, /* Inode number - ignore, it will be filled by proc_register[_dynamic] */

 7, /* Length of the file name */

 "rw_test", /* The file name */

 S_IFREG | S_IRUGO | S_IWUSR,

 /* File mode - this is a regular file which

 * can be read by its owner, its group, and everybody

 * else. Also, its owner can write to it.

 *

 * Actually, this field is just for reference, it's

 * module_permission that does the actual check. It

 * could use this field, but in our implementation it

 * doesn't, for simplicity. */

 1, /* Number of links (directories where the file is referenced) */

 0, 0, /* The uid and gid for the file - we give it to root */

 80, /* The size of the file reported by ls. */

 &Inode_Ops_4_Our_Proc_File,

 /* A pointer to the inode structure for

 * the file, if we need it. In our case we

 * do, because we need a write function. */

 NULL

 /* The read function for the file. Irrelevant,

 * because we put it in the inode structure above */

};

/* Module initialization and cleanup ******************* */

/* Initialize the module - register the proc file */

int init_module() {

 /* Success if proc_register[_dynamic] is a success, failure otherwise */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

 /* In version 2.2, proc_register assign a dynamic

 * inode number automatically if it is zero in the

 * structure, so there's no more need for

 * proc_register_dynamic */

 return proc_register(&proc_root, &Our_Proc_File);

 #else

 return proc_register_dynamic(&proc_root, &Our_Proc_File);

#endif

}

/* Cleanup - unregister our file from /proc */

void cleanup_module() {

 proc_unregister(&proc_root, Our_Proc_File.low_ino);

}

Работа с файлами устройств (запись и IOCTL)

Файлы устройства представляют физические устройства. Многие физические устройства используются для вывода и для ввода, так должен иметься некоторый механизм для драйверов устройства в ядре, чтобы послать вывод устройству из процесса. Это выполняется, открывая файл устройства для вывода и записывая в него точно так же, как в обычный файл. В следующем примере, это выполнено функцией device_write.

Этого не всегда достаточно. Вообразите, что Вы имеете последовательный порт, связанный с модемом (даже если Вы имеете внутренний модем, он выглядит с точки зрения CPU как последовательный порт, связанный с модемом, так что Вы не должны слишком сдерживать Ваше воображение). Естественное решение использовать файл устройства, чтобы передавать модему команды модема или данные, которые будут посланы через телефонную линию и читать из модема ответы для команд или данные, полученные через телефонную линию. Однако, это оставляет открытым вопрос о том что делать, когда Вы должны работать с последовательным портом непосредственно, например настроить скорость обмена данными с портом.

Ответ в Unix должен использовать специальную функцию, названную ioctl (сокращение от input output control). Каждое устройство может иметь собственные команды ioctl, которые могут читать ioctl (для передачи данных от процесса ядру), записывать ioctl (чтобы возвратить информацию процессу)[4], выполнять оба действия или ни одно из них. Функция ioctl вызывается с тремя параметрами: описатель файла соответствующий файлу устройства, ioctl номер, и параметра, который имеет тип long, так что Вы можете использовать приведение, чтобы передать что-нибудь.[5]

вернуться

4

Обратите внимание, что здесь роли чтения и записи перевернуты снова , так что при чтении ioctl должен послать информацию ядру а при записи должен получить информацию из ядра. 

вернуться

5

Это не точно. Вы не способны передать структуру, например, через ioctl. Но Вы можете передать указатель на структуру.