Другие силы,
действующие в горизонтальной плоскости:
Сила, с которой дорога толкает лошадь, +G и Сила, с которой лошадь толкает дорогу, — G равны и противоположны;
Сумма сил трения, приложенных к телеге, +H и Сумма сил, действующих на дорогу и воздух со стороны телеги, — Н равны и противоположны;
Сила сопротивления воздуха, приложенная к лошади, +J и Сила, действующая на воздух со стороны лошади, — J равны и противоположны;
действующие в вертикальной плоскости:
Сила притяжения лошади Землей, +W и Сила притяжения Земли лошадью, — W равны и противоположны
Такая же пара сил определяет взаимодействие телега — Земля. Но каково соотношение между силами F и G или F и Н, это совсем другой вопрос, который не имеет ничего общего с третьим законом Ньютона. (В то же время, складывая все силы, действующие на одно тело, например силы F и Н, которые действуют на телегу, можно с помощью второго закона Ньютона предсказать ускорение тела.)
«Действие равно противодействию» — почти аксиома
При построении небесной и земной механики Ньютону пришлось иметь дело с притяжением Земли, приложенным к Луне, и с притяжением Луны, действующим на Земле. Если бы мы не могли утверждать, что подобные силы равны и противоположно направлены, то развитие механики сильно осложнилось бы, а то и вовсе стало бы невозможным, даже, пожалуй, лишенным смысла.
Дело в том, что это свойство сил лежит в основе нашего способа рассмотрения сил в механике. Взвешиваясь, вы фактически измеряете силу давления ваших ступней на площадку весов. Но вы стремитесь измерить силу притяжения вашего тела Землей, и если вы находитесь в состоянии равновесия, то сила земного притяжения уравновешивается реакцией площадки весов. Итак, мы хотим измерить силу земного притяжения W (фиг. 211).
Фиг. 211. Опыт со взвешиванием в ускоренно движущемся лифте.
слева — лифт неподвижен; справа — лифт движется с ускорением.
Мы предполагаем (первый закон Ньютона), что в состоянии равновесия W = —F1, где F1 — реакция площадки весов. Далее (третий закон Ньютона), сила F1 равна и противоположна силе F2 давления тела на площадку весов, и весы измеряют силу F2. Третий закон Ньютона ничего не говорит о соотношении между силой W и любой из сил F1 и F2. Он говорит только о том, что F1 и F2 равны и противоположны друг другу, (Разумеется, самой силе W отвечает равная и противоположная сила реакции, направленная вверх, — притяжение, которое испытывает огромная Земля со стороны вашего тела.)
Если вся эта система тел движется ускоренно вверх (как в лифте в начале подъема), то сила F1 должна быть больше силы W, так что результирующая сила [F1—W] будет придавать ускорение вверх и вашему телу в соответствии с соотношением F = M∙a; но сила F2 по-прежнему будет равна силе F1 и противоположна ей по направлению. В этом случае весы измерят F2 (или F1), но не W.
Демонстрация действия и противодействия
Если равенство действия и противодействия кажется очевидным[136] проявлением симметрии, вы можете рассматривать его как тривиальный факт, своего рода 2 + 2 = 4, и вывести отсюда закон сохранения количества движения. Но большинство ученых считает такой подход чрезмерно наивным и полагает, что равенство действия и противодействия нельзя доказать, не измеряя количества движения.
ОБОДРЯЮЩИЕ ОПЫТЫ
Можно предложить несколько опытов, которые если и не доказывают равенства действия и противодействия, то во всяком случае иллюстрируют этот принцип. Опыты, изображенные схематически на фиг. 213 и 214, кажутся на первый взгляд удачными, но их можно истолковать как проверку самих пружин, проверку, которая ничего не доказывает, если только мы не примем в качестве допущения то, что стремимся доказать.