Выбрать главу

Примеры эффекта Бернулли

На фиг. 242, а струя воздуха обдувает открытый конец трубки, погруженной в жидкость. Воздух в области А движется быстрее, чем в области В, где он смешивается с атмосферным воздухом. Поэтому давление в А ниже атмосферного, и атмосферное давление в D может поднять жидкость по трубке, где она распыляется. На Фиг. 242, б показаны два шарика для пинг-понга, подвешенные на гибких проволочках недалеко один от другого. Струя воздуха между ними заставляет их сблизиться. На фиг. 242, в воздух по трубке АВ подается в отверстие в центре закрепленного диска С.

Фиг. 242. Демонстрационные опыты.

а — распылитель; б — струя воздуха между двумя близко подвешенными легкими шариками; в — при подаче воздуха подвижная пластина D притягивается к пластине С.

Подвижный диск D расположен на небольшом расстоянии под диском С. Воздух, проходящий через АВ, прежде чем выйти в атмосферу, изменяет направление и течет горизонтально в узком пространстве между С и D. Подвижный диск D притягивается к С, даже если к нему подвесить груз W. Если диск D очень легок и закреплен подвижно, так что не может соскользнуть вбок, он будет вибрировать около С, издавая пронзительный визг. По этому принципу действует известная всем в детстве пищалка из натянутой травинки. Нечто общее с этим имеет и действие наших голосовых связок.

На фиг. 243 шарик удерживается струей воздуха или воды.

Фиг. 243. Струя воздуха удерживает легкий шарик.

Здесь удивителен не тот факт, что струя может подбрасывать шарик (для этого надо лишь, чтобы шарик попал в восходящий поток), а то, что шарик не сваливается вбок. Равновесие кажется неустойчивым, но это не так. Когда шарик отклоняется в одну сторону В, большая часть струи идет по другую сторону А. ВА, где скорость потока выше, давление меньше, поэтому большее давление в области В возвращает шарик в среднее положение. (Обычно шарик вращается, создавая дополнительное благоприятное изменение в распределении линий тока.)

Искривленный полет мяча («сухой лист»)

Почему вращающийся мяч движется по кривой линии? Можно показать, что здесь проявляется эффект Бернулли. Каждый мяч, каким бы гладким он ни казался, имеет в микроскопических масштабах шероховатости. Вращающийся мяч захватывает неровностями своей поверхности молекулы воздуха и заставляет их участвовать в своем движении. Таким образом, мяч окружен вращающимися слоями воздуха, ближайшие из которых движутся с той же скоростью, что и поверхность мяча, а более удаленные слои движутся медленнее и медленнее[146]. Если такой вращающийся мяч летит вперед, то линии тока складываются из двух движений: циркуляции воздуха вокруг мяча и потока, обдувающего мяч.

Вообразите наблюдателя, который для наблюдения за линиями тока летит за мячом, оставаясь все время на одном с ним уровне. Для наблюдателя мяч все время находится рядом, и оба они будут ощущать ветер, дующий навстречу. «Ветер» дует со скоростью полета мяча, но в противоположную сторону.

Можно прибегнуть к другому столь же полезному способу рассуждения. Представим себе сильный ветер, дующий навстречу со скоростью, в точности равной и противоположной скорости мяча. Тогда наблюдатель может спокойно стоять на земле и наблюдать за мячом, неподвижно висящим около него[147]. В таком ветре линии тока будут параллельными прямыми (фиг. 244, а).

Чтобы понять, почему вращающийся мяч может лететь по кривой линии, набросаем обе картины линий тока и затем сложим их на основе разумных предположений. На фиг. 244, б изображен вращающийся мяч с вращающимися вместе с ним слоями воздуха. Чтобы показать, что по мере удаления от мяча движение воздуха замедляется, внешние линии тока расположены на больших расстояниях друг от друга и помечены более короткими стрелками. Для сложения обоих движений наложим один рисунок на другой (фиг. 244, в) и в каждой точке сложим векторы скорости. Нарисуем в точке Р два небольших вектора скорости, v1 для равномерного потока и v2 для вращения, и построим параллелограмм, чтобы найти равнодействующую (фиг. 244, г), которая представляет собой скорость суммарного движения в этой точке. Повторите эту операцию для точек по всему рисунку, беря каждый раз одну и ту же горизонтальную скорость v1 и проводя v2 по касательной к окружностям. Скорость вращения v2 изобразите большой близко к мячу и маленькой вдали от него.

вернуться

146

Такая картина приемлема для быстро вращающегося грубого мяча, вроде бейсбольного. Полное рассмотрение более сложно [см. Amer. Journal of Physics, 27, 589 (1959)]. Очень гладкий мяч, вращающийся с умеренной скоростью, увлекает только тонкий «пограничный слой» окружающего воздуха и часто отклоняется «не в ту сторону»!

вернуться

147

Это рассуждение с помощью «встречного ветра» полезно. Его можно применить, например, при рассмотрении звуковых волн, где с помощью второго закона Ньютона оно позволяет нам предсказать, что скорость звука в воздухе будет равна √[(7/5 (давление воздуха)/(плотность воздуха)].