Выбрать главу

a = (vv0)/t

которое мы считаем истинным, и умножая обе его части на t, мы приходим к выражению, в такой же степени справедливому:

at = vv0.

Прибавляя к обеим частям этого равенства v0, получаем еще одно уравнение, равносильное первому:

v0 + atvv0v0 = v

или

v0 + atv

Поменяв местами обе части последнего равенства, получим

v = v0 + at

Изменения, которым мы подвергли исходное равенство a = (v — v0)/t, представляют собой лишь изменения, допускаемые правилами логики.

Полученный результат v = v0 + at точно так же верен или неверен, как исходное равенство a = (v — v0)/t. Мы видим в этом случае, что новая «формула» — это просто новый вариант прежнего отправного положения, поскольку она гласит:

КОНЕЧНАЯ СКОРОСТЬ = НАЧАЛЬНАЯ СКОРОСТЬ + ПРИРАЩЕНИЕ В ЕДИНИЦУ ВРЕМЕНИ∙ВРЕМЯ

Величина ПРИРАЩЕНИЯ В ЕДИНИЦУ ВРЕМЕНИ должна равняться приращению скорости

Согласно этой формулировке,

КОНЕЧНАЯ СКОРОСТЬ = НАЧАЛЬНАЯ СКОРОСТЬ + ПРИРАЩЕНИЕ СКОРОСТИ = КОНЕЧНАЯ СКОРОСТЬ

Читателям, знакомым с алгеброй, это рассмотрение должно показаться излишне длинным. Можно было бы просто написать

a = (vv0)/t, следовательно, at = v v0, или v = v0 + at.

Если же в выводе формул вы видите некое таинство, то это рассмотрение следует прочесть внимательно. Неопытный читатель может, пожалуй, ухватиться за высказанные нами слова в защиту алгебры, но дело не в этом; нужно отвыкнуть от ошибочных представлений об «истинности» формул или о том, что в выводе формул есть нечто таинственное.

(2) s = 1/2 (v + v0)∙at

При экспериментальной проверке мы будем иметь дело с расстоянием, а не со скоростью. Чтобы выяснить, как соотношение между пройденным расстоянием и затраченным временем вытекает из нашего предположения о постоянном ускорении, нам надо знать расстояние при изменяющейся скорости. Руководствуясь здравым смыслом, мы приходим к предположению, что нужно пользоваться средней скоростью v-, получаемой сложением начальной и конечной скоростей и делением их суммы на 2. Таким образом,

СРЕДНЯЯ СКОРОСТЬ v- = (v0 + v)/2,

Мы пользуемся этой средней скоростью как неизменной величиной вместо реальной изменяющейся скорости и находим пройденное расстояние, умножая среднюю скорость на время. Таким образом,

РАССТОЯНИЕ s = v-t,

или

s = 1/2 (v + v0)∙at

В этом соотношении ускорение а не фигурирует. Тем не менее соотношение неверно, если ускорение непостоянно (см. задачу 6). Это выражение не простая перегруппировка прежнего выражения; оно содержит предположение относительно средней скорости. Это предположение (до сих пор оно было основано лишь на «здравом смысле») можно проверить с помощью математического анализа или изящного геометрического способа, предложенного еще Галилеем (см. задачу 6). Оба способа показывают, что при движении с постоянным ускорением такое употребление средней скорости правильно. Для других типов движения нужны какие-то иные способы усреднения, арифметическое среднее брать не годится[26]. Таким образом, наше предположение верно для движения с постоянным ускорением; мы используем его в качестве примера лишь постольку, поскольку знаем, что оно верно. Так, элементарное изложение приспосабливается для получения правильных результатов. Хотя это иногда неизбежно, такой подход оставляет, к сожалению, впечатление, будто ученый лишь выдвигает правдоподобные гипотезы, он не дает представления о том, как на самом деле ученый-естествоиспытатель осторожно нащупывает путь, подвергая свои предположения честной проверке. Поэтому вам необходимо изучить задачу 6.

(3) s = v0t + (1/2)∙at2

вернуться

26

Например, если ускорение не постоянно, а быстро уменьшается до нуля от некоторого большого значения, то движущееся тело набирает скорость главным образом в самом начале своего перемещения. В этом случае средняя скорость больше (v0 + v)/2.