Выбрать главу

Фиг. 45. Сложение векторов путем построения параллелограмма.

а — этапы построения; б — результат построения.

Фиг. 46. Сложение векторов путем построения многоугольника.

Какие величины относятся к векторам? Иначе говоря, какие величины складываются геометрически по правилу параллелограмма? Векторами являются перемещения, или, если называть их более строго, «направленные расстояния» или «смещения». Раз перемещения — векторы, то достаточно разделить их на промежуток времени, за который происходит перемещение, чтобы увидеть, что скорости — тоже векторы. Продолжая этот подход, мы видим, что ускорения — тоже векторы[32]. Нам встретятся и другие векторы, другие величины, которые нужно измерять с помощью приборов и которые подчиняются правилу геометрического сложения?

Здесь возникает важный вопрос: являются ли силы векторами, т. е. подчиняются ли они правилам геометрического сложения?

На этот вопрос нельзя ответить, просто подумав[33]. Ответ не очевиден и требует предварительного изучения (см. гл. 3).

Скаляры

Физические величины, которые имеют только величину и которым нельзя приписать никакого направления, называются скалярами; хорошими примерами скалярных величин служат объем и температура. Существуют и такие вещи, которые не являются ни векторами, ни скалярами, скажем доброта, а также некоторые величины, этакие «сверхвекторы», называемые тензорами. Примером тензоров могут служить напряжения в деформированном твердом теле: давление, перпендикулярное к любой площадке образца, и срезающие усилия, действующие вдоль нее. Более сложные примеры встречаются в математической теории относительности. Например, мы будем рассматривать количество движения mv как вектор с тремя компонентами: mvx, mvy, mvz, а кинетическую энергию — как скаляр. Эйнштейн, придерживаясь обобщенного представления о пространстве-времени, предпочитал объединять количество движения и кинетическую энергию в «четырехвектор», т. е. с четырьмя компонентами: три для количества движения и одна для кинетической энергии.

Сложение нескольких векторов

Два вектора складываются по правилу параллелограмма.

Вверху фиг. 47 показано сложение A + B = R (знаки + и =, напечатанные жирным шрифтом, обозначают геометрическое сложение). Исходя из этого определения, мы можем прийти к более примитивным способам сложения «одного перемещения, а потом другого», как показано на фиг. 47.

Фиг. 47. Сложение векторов по правилу многоугольника.

Это простейший способ сложения нескольких векторов. Если нам нужно сложить векторы А, В, С, D, то можно было бы складывать их, применяя последовательное построение параллелограмма: получить сумму A + B, прибавить ее к С, а затем прибавить новую сумму к D. Однако такое построение утомительно, и если выполнить все его этапы на одном чертеже, получится изрядная путаница (фиг. 49, а). Вместо этого сложим А и В по правилам многоугольника, проведя В из конца А, затем прибавим С к их сумме, проведя С из конца этой суммы, затем прибавим D. Можно опустить промежуточные суммы и найти общую сумму R, соединив начало первого вектора с концом последнего (фиг. 49, б).

Фиг. 48. Никогда не складывайте векторы «голова к голове».

Получается совершенно неверный ответ, отнюдь не их сумма.

Фиг. 49. Сложение нескольких векторов.

а — методом последовательного построения параллелограммов; б — методом построения многоугольника.

Проведение параллельных прямых

Чтобы переместить вектор с одного места на листе бумаги в другое, нужно начертить на новом месте отрезок прямой, имеющий ту же длину и то же направление, что и прежний отрезок, т. е. новый отрезок должен быть параллелен первому. Существуют геометрические методы и приспособления, позволяющие провести прямую, параллельную другой прямой. Мы покажем вам хотя бы один способ построения параллельных прямых. Для этого не требуется сложного построения углов.

вернуться

32

Перемещение — это вектор. Скорость — это ведь перемещение в час, поэтому и скорость — вектор. Следовательно, изменение скорости (приращение или убыль скорости) — тоже вектор. Ускорение есть изменение скорости в час, поэтому и ускорение — вектор.

вернуться

33

Разве что мы готовы определить силы как величины, складываемые геометрически, а затем принять следствия этого определения при дальнейшем построении механики!