Молекулярное объяснение поверхностного натяжения. Итак, тот факт, что жидкости сохраняют свой объем, мы «объяснили» наличием дальнодействующих сил притяжения. Посмотрим, не смогут ли эти силы объяснить существование поверхностного натяжения. Представим себе состояние молекулы А в середине сосуда с водой (фиг. 114). Со всех сторон ее толкают другие молекулы. Кроме того, со всех сторон ее притягивают ближайшие соседи — и равнодействующая сила притяжения равна нулю.
Фиг. 114. Силы, действующие на молекулы, в жидкости.
а — дальнодействующее притяжение ближайших соседей; б — короткодействующее отталкивание близких соседей при столкновении; в — равнодействующая притяжения (нуль для А, направлена вниз для В); г — равнодействующая отталкивания (нуль для А, направлена вверх для В).
Теперь рассмотрим другую молекулу В, находящуюся на поверхности воды. Ее тоже толкают, но не со всех сторон, и тоже притягивают, но не во всех направлениях. В области действия сил притяжения у нее есть соседи снизу и с каждой стороны, но нет соседей сверху. Равнодействующая сил притяжения направлена внутрь жидкости и уравновешивается действием столкновений снизу. Таким образом, молекула В испытывает притяжение вниз, наподобие дополнительного веса. Во внутренних областях большой круглой капли молекулы будут, подобно молекуле А, испытывать равномерное притяжение со всех сторон. Молекулы на поверхности, подобно молекуле В, будут втягиваться внутрь. Так как такие молекулы В будут пытаться приблизиться к центру капли, поверхность будет стремиться сжаться; по существу создается впечатление, что капля имеет сжимающуюся оболочку. Очевидно, если на поверхности образуется гребень, молекулярное притяжение распрямит его, несмотря на мешающие возмущения (небольшое углубление на поверхности также исчезнет, хотя это менее очевидно); в результате притяжения молекул все неровности на поверхности будут сглаживаться (фиг. 115).
Фиг. 115. Поверхностные силы в небольшой капле жидкости.
Действующее на молекулы типа В притяжение соседей стремится придать массе жидкости сферическую форму. (Заметьте, что сфера имеет минимальную поверхность при заданном объеме.) Если на поверхности появляются небольшие неправильности, поверхностные силы стремятся устранить их.
Чтобы представить себе общую картину, сравните заполненную молекулами каплю с толпой людей, привлеченных уличной дракой. На фиг. 116, б показан вид толпы с птичьего полета. Прибывает все больше и больше заинтересованных зевак. Опоздавшие плохо видят, что происходит, они напирают на впереди стоящих — их притягивает любопытство, но они напирали бы так же, если бы их притягивали просто стоящие впереди соседи. Как влияет это притяжение к центру на толпу в целом? Подвижная толпа стягивается в круг с минимальным внешним периметром. Круг имеет меньшую протяженность периметра, нежели любая другая фигура с той же общей площадью. Человек А, находящийся в глубине толпы, оказывается сжатым, и если ему позволяет рост, то видит, что его неприятные ощущения вызваны напирающими на него людьми, нажимающими внутрь. Он будет страдать точно тай же, если накинуть на толпу огромный пояс и затягивать его. Натянутый пояс будет влиять на внешнюю форму толпы и на тесноту внутри нее точно так же, как и стремление людей, находящихся снаружи, пробиться к середине.
Фиг. 116. Толпа.
а — толпа собирается; б, в — эффект одинаковый.
Поможет ли эта аналогия[72] понять, каким образом молекулярное притяжение оказывает то же действие, что и эластичная оболочка, растянутая по всей поверхности жидкости? С молекулярной точки зрения на поверхности жидкостей существует не реальная «шкурка», как у кролика, а особый слой внешних молекул.
Соотношение между поверхностными и объемными эффектами. Насекомые и поверхностное натяжение
72
Аналогия, которая часто бывает полезной при обучении, никогда не может доказать чего-либо. Некоторые теории, по сути дела, лишь аналогии (например, старые механические модели строения атома). Можно приветствовать их помощь нашему мышлению и отдавать им должное за плодотворные идеи, но в то же время не следует впадать в ошибку, считая, что они должны раскрыть «настоящую истину», и не следует цепляться за них, когда их полезность исчерпана.