Фиг. 177. Силы, действующие на частицы хвоста кометы.
Влияние давления света пропорционально площади поверхности, гравитационное притяжение пропорционально массам притягивающихся тел.
X. Сила тяжести внутри Земли
С помощью интегрального исчисления Ньютон показал, что пустая материальная оболочка сферической формы притягивает находящуюся вне ее массу так, как если бы вся масса оболочки была сосредоточена в центре сферы.
Представив себе, что Земля состоит из концентрических оболочек (даже различной плотности), Ньютон смог прийти к заключению, что и Земля притягивает другие тела так, как будто вся ее масса сосредоточена в ее центре. Ньютон также показал, что помещенное в такую оболочку тело не испытывает на себе действия сил. Этот результат не имеет большого значения для толкования земного тяготения, хотя и очень важен в теории электричества, ибо позволяет осуществить превосходную проверку закона обратных квадратов для электрических зарядов. Об этом будет сказано подробнее в гл. 33[102].
Эти два результата, полученные для сферической оболочки, дают интересную картину гравитационного поля однородного шара. Вне его поле спадает по «закону обратных квадратов»: g изменяется как 1/R2, где R — расстояние от центра. Если поместить тело внутри шара, то оно окажется как бы внутри оболочки, притяжение которой на него не действует. Тело остается как бы на поверхности внутреннего шара. У него меньшая масса, но оно находится ближе к центру. В результате внутри шара g изменяется пропорционально R.
Фиг. 178. Определение величины g.
XI. Искусственные спутники
Ньютон указал, что любой снаряд является спутником Земли. Допустим, что из пушки, стоящей на вершине горы, горизонтально выпущен снаряд. Медленно летящий снаряд падает на Землю по параболе, фокус которой расположен близко к вершине. В действительности траектория снаряда представляет собой эллипс, второй фокус которого находится в центре Земли. Парабола и эллипс неразличимы на малом участке траектории, наблюдаемой, пока снаряд еще не упал (Чтобы получилась действительно парабола, нужна большая, плоская «Земля», а не шарообразная, с постоянным значением g.) Более быстрый снаряд полетит по эллипсу, но с малым эксцентриситетом. Можно придать снаряду такую скорость, что он будет вращаться вокруг Земли подобно Луне, обходя Землю по круговой орбите многократно (при условии, что стрелявший человек освободит дорогу «маленькой луне», после того как произведет выстрел). Такова картина движения искусственного спутника, полученная Ньютоном. Для спутника Земли и Луны будет справедлив третий закон Кеплера.
Если снаряд летит со скоростью, превышающей ту, которая соответствует движению по круговой орбите, то его траектория будет представлять собой эллипс, ближайшим фокусом которого является центр Земли. Если снаряд будет лететь быстрее, его траектория превратится в огромную параболу. Если его скорость еще больше возрастет, то он будет двигаться по гиперболе и покинет Землю навсегда. Скорость, необходимую для такого «бегства», можно рассчитать. Такой расчет очень важен для космических полетов и уже давно применялся при определении скорости молекул газа, покидающих атмосферу Земли.
Фиг. 179. Орбиты спутников Земли (по рисунку Ньютона).
Когда эллиптические орбиты проходят через Землю, они показаны так, как если бы вся масса Земли была сосредоточена в ее центре. Поэтому на них как бы не распространяется уменьшение силы тяжести внутри земного шара.
XII. Возмущения движений планет. Великое открытие
Движением планет управляет в основном Солнце, но другие планеты, подчиняющиеся закону всемирного тяготения, тоже создают небольшие силы, «возмущающие» простое движение. Ньютон изучал эти возмущения. Например, большая планета Юпитер притягивает соседний Сатурн, в результате чего наблюдаются заметные изменения орбиты Сатурна. Направление притяжения изменяется, так как Юпитер и Сатурн движутся по своим орбитам. Притяжение между ними значительно изменяется также и по величине, когда межпланетное расстояние меняется от минимального до максимального[103]. Это взаимодействие влияет на силу тяжести и вносит в движение планет изменения, которые, накапливаясь, в свою очередь несколько изменяют орбиты. Ньютон оценил этот эффект и показал, что полученные результаты соответствуют наблюдаемым особенностям движения Сатурна. Однако общее решение проблемы — весьма сложная задача, и Ньютон положил лишь начало ее исследованию.
102
103
Расстояние между ними изменяется от величины, равной сумме радиусов орбит, до величины, равной их разности: 1400 млн. км — 770 млн. км (1400—770); отношение этих величин 3,5:1.Это вызывает возмущающее притяжение, меняющееся в отношении 1:12.