Закон обратных квадратов справедлив во всех случаях прямолинейного распространения из источника при отсутствии поглощения[93]. Правильная мысль пришла в голову Ньютону, когда он пытался получить третий закон Кеплера! Он попробовал применить зависимость, обратно пропорциональную квадрату расстояния. Луна находится на расстоянии шестидесяти земных радиусов, а яблоко — на расстоянии лишь одного радиуса от центра Земли, поэтому притяжение в области Луны уменьшается в 1/602 раз, или в 3600 раз. Ускорение Луны уже будет не 9,81 м/сек2, а 9,81/3600 м/сек2. Легко подсчитать значение v2/R для Луны и убедиться, что оно совпадает с «предсказанной» таким способом величиной. Представьте себе тот восторг, который вы бы испытали, открыв это соответствие! Это была успешная проверка соотношений F = M∙a и a = v2/R и закона обратных квадратов для силы тяжести. Вы могли бы сделать первую проверку выдающейся теории — и великое открытие принадлежало бы вам!
Однако сам Ньютон, полный нетерпения, но дальновидный, не был полностью удовлетворен этой проверкой. По непостижимым причинам он отложил все вычисления еще на несколько лет. По-видимому, он стремился решить задачу о притяжении тела шаром с распределенной равномерно в нем массой, подобным Земле. Он уменьшил величину g в 602 раз, но уменьшение от 1 до (1/60)2 предполагает, что тело на поверхности Земли, для которого ускорение g = 9,81 м/сек2, находится как бы на расстоянии одного земного радиуса от притягивающего центра. Притягивает ли громадный круглый земной шар яблоко так, как если бы вся масса Земли была сосредоточена в ее центре на расстоянии 6300 км от поверхности? Близкие от яблока части земной массы должны притягивать его очень сильно (согласно закону обратных квадратов).
Фиг. 150. Задача Ньютона.
Яблоко, притягиваемое различными частями Земли (показаны четыре отдельных элемента)
Другие части земной массы, находящиеся, например, на расстоянии 12 600 км от яблока, будут притягивать его очень слабо. Сила притяжения различных частей земной массы действует на яблоко под разными углами. Какова результирующая всех этих сил? Здесь мы сталкиваемся с очень трудной математической задачей — сложением бесконечного числа различных притяжений. Она легко решается с помощью интегрального исчисления, но этот тонкий математический аппарат в то время только создавался. Ньютон сам изобрел его для решения этой и других задач, входящих в его работу; одновременно это же сделал и немецкий математик Лейбниц. Его вычисления, связанные с движением Луны, были отложены до тех пор, пока он не убедился, пользуясь изобретенным им методом, что шар с равномерно распределенной массой притягивает тела так, как если бы вся его масса была сосредоточена в его центре, при условии, что каждый участок притягивает тела по закону обратных квадратов. «Как только Ньютон доказал эту замечательную теорему, а мы знаем по его собственным словам, что он и не мечтал получить столь замечательный результат, пока ему не удалось это сделать с помощью собственных математических исследований, весь механизм Вселенной предстал перед ним»[94]. После этого он вернулся вновь к изучению движения Луны и с помощью одного лишь расчета проверил свои законы движения, формулу v2/R и замечательную идею о законе обратной пропорциональности силы тяжести квадрату расстояния как причины движения Луны по круговой орбите. На сей раз Ньютон был удовлетворен вычислениями. Согласие было полное; необходимая сила получалась за счет уменьшения силы тяжести. Ньютону удалось раскрыть тайну движения Луны.
93
Предположим, что небольшой распылитель испускает струю мелких капель масла. Эти капли летят из ствола по прямым линиям, образуя широкий конус. Если экран (кусок хлеба, скажем) полностью перекрывает конус на расстоянии 1 м от ствола, то на расстоянии 2 м конус можно перекрыть экраном, площадь которого будет в 4 раза больше, а на расстоянии в 3 м — в 9 раз больше первого, поэтому толщина масла на экранах будет в пропорция 1:1/4:1/9… Это — «закон обратных квадратов намазывания маслом».