Выбрать главу

Години наред физиците задават въпроса: Ако светлината е вълна, то тогава какво представлява вълнението? Светлината може да премине през празно пространство с дължина от милиарди светлинни години, но то е вакуум, лишен от какъвто и да е материал. В такъв случай какво представлява вълнението във вакуума? С появата на теорията на Калуца ние разполагахме с конкретно предложение за разрешаването на този проблем: светлината представлява вълнички в петото измерение. Уравненията на Максуел, които описват точно всички свойства на светлината, се очертават просто като уравнения за вълните, които се движат в петото измерение.

Представете си риби, които плуват в плитко езеро. Те може никога да не са подозирали, че съществува трето измерение, защото очите им гледат настрани и те могат да плуват само назад-напред, наляво и надясно. Третото измерение за тях може да изглежда невъзможно. Но след това си представете, че върху езерото вали дъжд. Въпреки че не могат да видят третото измерение, те могат да виждат ясно сенките от вълничките на повърхността на езерото. По същия начин теорията на Калуца обяснява светлината като вълнички, които се носят върху петото измерение.

Калуца дава отговор и на въпроса къде се намира то. Тъй като не виждаме доказателства за съществуването на пето измерение, то трябва да „се е свило“ и да е станало толкова малко, че не може да бъде наблюдавано. (Представете си, че вземате двуизмерен лист хартия и го свивате стегнато във формата на цилиндър. От известно разстояние цилиндърът изглежда като едноизмерна линия. По този начин един двуизмерен обект се е превърнал в едноизмерен обект чрез своето свиване.)

Първоначално статията на Калуца предизвиква сензация. Но през следващите години завладяват възражения срещу теорията му. Каква е големината на това ново пето измерение? Как то се е свило? На тези въпроси не могли да бъдат намерени отговори.

В продължение на десетилетия Айнщайн работил върху тази теория с прекъсвания. След като починал през 1955 т. теорията скоро била забравена, като станала странна бележка под линия в развитието на физиката.

Струнната теория

Всичко това се променило с появата на една смайваща нова теория, наречена суперструнната теория. До 80-те години на XX в. физиците се давели в море от субатомни частици. Всеки път когато разбивали на парчета един атом с мощните ускорители на частици, те откривали десетки нови частици, които се разделяли. Това било толкова обезсърчаващо, че Дж. Робърт Опенхаймер обявил, че Нобеловата награда по физика трябва да бъде дадена на физика, който не е открил нова частица през тази година! (Енрико Ферми, ужасен от размножаването на субатомни частици с имена, които звучели като на гръцки, казал: „Ако можех да запомня имената на всички тези частици, щях да стана ботаник.“91) След десетилетия усилен труд този зоопарк от частици успял да бъде подреден в нещо, наречено „стандартен модел“. Милиарди долари, потта на хиляди инженери и физици, и двадесет Нобелови награди са отишли за мъчителното сглобяване, парче по парче, на стандартния модел. Той е наистина забележителна теория, която като че ли се съгласува с всички експериментални данни, свързани със субатомните частици.

Но въпреки всичките си експериментални успехи стандартният модел страда от един сериозен дефект. Както казва Стивън Хокинг: „Моделът е грозен и е създаден за случая.“ Той съдържа поне деветнадесет свободни параметъра (сред които влизат масите на частиците и силата на техните взаимодействия с други частици), тридесет и шест кварки и антикварки, три точни и резервни копия на субчастиците и множество странно звучащи субатомни частици като тау неутрината, глуоните на Йанг-Милс, Хигс-бозоните, W-бозоните и Z-частиците. Нещо по-лошо, в стандартния модел не се споменава за гравитацията. Струва ми се, че е трудно да се повярва, че природата на своето най-висше, фундаментално равнище може да действа толкова наслуки и да бъде неелегантна във висша степен. Така се появява теория, която само една майка може да обича. Самата неелегантност на стандартния модел принуждава физиците да направят повторен анализ на всичките си допускания за природата. Нещо било сбъркано, и то страшно много!

Ако човек анализира последните няколко века във физиката, едно от най-важните постижения през последното столетие било обобщаването на цялата фундаментална физика в две големи теории: квантовата теория (представена от стандартния модел) и Айнщайновата теория на общата относителност (описваща гравитацията). Забележителен е фактът, че заедно те представляват общият сбор на цялото физическо познание в областта на физиката на фундаментално ниво. Първата теория описва света на миниатюрното — субатомния квантов свят, в който частиците играят фантастичен танц, изниквайки от нищото, изчезвайки в него и появявайки се на две места по едно и също време. Втората теория описва света на макрокосмоса — черните дупки и Големия взрив, и си служи с езика на гладките повърхности, разтегнатите тъкани и деформираните плоскости. Теориите са противоположни във всяко отношение, тъй като използват различна математика, различни допускания и различни физически визуални образи. Става така, сякаш природата е имала две ръце, като нито едната от двете не е поддържала връзка с другата. Нещо повече, всеки опит за свързване на тези две теории е водел до безсмислени отговори. В продължение на половин век всеки физик, който се е опитвал да уреди чрез посредничеството си насилствен брак между квантовата теория и общата относителност, е установявал, че теорията избухва в лицето му, давайки безкрайно много отговори, които в крайна сметка се обезсмислят.

вернуться

91

Kaku. Hyperspace, с. 118.