Выбрать главу

Друга далечна възможност е използването на серия от миниатомни бомби за задвижването на един междузвезден кораб. В проекта „Орион“ миниатомните бомби трябва да бъдат изхвърлени последователно от задната част на ракетата, така че космическият кораб да „яхне“ шоковите вълни, създадени от тези миниводородни бомби. На хартия подобна конструкция би могла да приближи един космически кораб до скоростта на светлината. След като хрумнала първоначално на Станислав Улам през 1947 г., който спомогнал за проектирането на първите водородни бомби, идеята била развита допълнително от Тед Тайлър (един от главните проектанти на ядрени бойни глави за американските военни) и от физика Фрийман Дайсън от Института за напреднали изследвания в Принстън.

През 50-те и 60-те години на XX в. бяха направени сложни изчисления за тази междузвездна ракета. Беше изчислено, че такъв междузвезден кораб ще може да стигне до Плутон и да се върне за една година, като максималната му скорост ще достигне 10 процента от скоростта на светлината. Но дори при тази скорост на него биха му трябвали около четиридесет и четири години, за да стигне до най-близката звезда. Учените изказват предположението, че космически ковчег, захранван с енергия от такава ракета, ще трябва да пътува столетия с екипаж, който ще създаде много нови поколения, чието потомство ще се роди и ще прекара целия си живот в космическия ковчег, за да успеят да се доберат техните наследници до близките звезди.

През 1959 г. „Дженерал Атомикс“ публикува доклад, в който се изчислява големината на един космически кораб „Орион“. Най-голямата версия, наречена „Супер Орион“, тежи 8 милиона тона, има диаметър от 400 метра и се енергизира с над 1 000 водородни бомби.

Но значителен проблем пред проекта е опасността от замърсяване с ядрени отпадъци, отделяни по време на изстрелването. Дайсън изчислил, че ядрените странични продукти от всяко изстрелване биха могли да предизвикат ракови заболявания с фатален изход при десет души. Освен това електромагнитният импулс (ЕМР) за подобно изстрелване е толкова силен, че ще предизвика масови къси съединения в съседните електрически системи.

Подписването на Договора за частична забрана на ядрените опити през 1963 г. оповестява края на проекта. Накрая се отказва и конструкторът на атомни бомби Тед Тайлър — главната движеща сила на проекта. (Веднъж той ми довери, че се разочаровал от проекта, когато осъзнал, че физиката, на която се основават миниатомните бомби, може да се използва и от терористи за създаването на преносими атомни бомби. Въпреки че проектът бе прекратен, тъй като бе сметнат за прекалено опасен, неговият съименник продължава да съществува — космическият кораб „Орион“ бе избран от NASA да замести Космическата совалка през 2010 година.)

Концепцията за ракета, задвижвана с ядрена енергия, бе възкресена отново за кратко време от Британското междупланетарно общество между 1975 и 1978 г. с проекта „Дедал“ — предварително проучване, което да установи дали може да бъде конструиран междузвезден кораб без екипаж, който да стигне до звездата на Барнард, която се намира на 5,9 светлинни години от Земята. (Звездата на Барнард е избрана, защото било изказано предположението, че тя може да има планета. Астрономите Джил Тартър и Маргарет Търнбул съставят списък от 17 129 близки звезди, които биха могли да имат планети, поддържащи някаква форма на живот. Най-обещаващият кандидат е Епсилон Инди А, който се намира на разстояние от 11,8 светлинни години.)

Ракетният кораб, планиран за проекта „Дедал“, е толкова огромен, че се налага да бъде конструиран в открития космос. Той ще тежи 54 000 тона, като почти цялото му тегло ще се състои от ракетно гориво и ще може да достига скорост 7,1 процента от скоростта на светлината с 450 тона полезен товар. За разлика от проекта „Орион“, който използва съвсем малки бомби, в които се осъществява деление на атома, проектът „Дедал“ ще използва миниводородни бомби със смес от деутерий и хелий–3, която ще бъде възпламенявана от електронни лъчи. Заради страшните технически проблеми, пред които бе изправен, както и заради безпокойствата от системата за ядрено задвижване, проектът „Дедал“ също бе изоставен за неопределено време.

Специфичен импулс и коефициент на полезно действие на двигателя

Понякога инженерите говорят за „специфичен импулс“, който дава възможност да класифицираме коефициента на полезно действие на различни двигателни устройства. Специфичният импулс се определя като промяната в кинетичната енергия на единица маса на пропеланта70. Вследствие на това колкото по-ефективен е двигателят, толкова по-малко гориво е необходимо за издигането на една ракета в Космоса. Кинетичната енергия на свой ред е резултатът от силата, която действа в течение на определен период от време. Въпреки че имат много голяма тяга, химическите ракети действат в продължение само на няколко минути и вследствие на това имат много нисък специфичен импулс. Тъй като йонните двигатели могат да действат в продължение на години, те имат висок специфичен импулс с много ниска тяга.

вернуться

70

Материал, който се използва, за да задвижи даден обект. — Б.пр.