Выбрать главу

2.2. ЗРЕНИЕ

Обмен сильного зрения в сумерках на низкую остроту зрения при ярком свете позволяет собакам занимать экологическую нишу, недоступную нам.

P. E. Miller, С. J. Murphy (1995)

Зрение — это чувство, формируемое в процессе воздействия света на зрительный аппарат (глаз). Оно заключается в восприятии света фоторецепторами с преобразованием его в электрические импульсы, передаче их по нервным волокнам в головной мозг, где посредством анализа и синтеза пришедших сигналов формируется образная копия визуального объекта на определенном эмоциональном фоне. Свет обладает двумя физическими свойствами: интенсивностью и частотой. Они обусловливают его соответствующие психологические свойства: степень освещенности (яркость) и цвет. Благодаря зрительному восприятию за счет воздействия света объекты обладают следующими характеристиками:

— расположение в пространстве;

— размер, форма и состав;

— подвижность или неподвижность.

Материальную основу зрения составляет зрительный анализатор, состоящий из трех частей:

— воспринимающей — оптические, фоторецепторные, нервные и другие элементы глаза;

— проводящей — нервные волокна, нервы и нервные ганглии;

— центральной — четверохолмие (средний мозг), наружное коленчатое тело в таламусе (промежуточный мозг), лимбическая система, зрительная зона коры головного мозга (КГМ).

Для лучшего понимания специфики зрения собаки[1] за основу возьмем зрение человека, как наиболее изученное, а также волка (ближайшего дикого родственника собаки) и кошки как ведущей сходный с собакой образ жизни в связи с человеком.

Способность животных определять (распознавать) различные визуальные характеристики объектов обусловливается свойствами зрения, связанными прежде всего с особенностями строения глаза. Глаз — орган, воспринимающий световые раздражения. Он имеет оптическую (преломляющую), воспринимающую и проводящую системы. Первую составляют роговица, хрусталик и стекловидное тело, вторую — фоторецепторы и элементы глазного дна, третью — нейроны (наиболее связаны с фоторецепторами — биполярные и ганглиозные) и нервные волокна, выходящие из глаза в виде зрительного нерва. Вторая и третья системы входят в состав сетчатки — светочувствительной оболочки.

Пространство между роговицей и радужкой со зрачком — передняя камера. Пространство от роговицы до узловой точки хрусталика и от нее до сетчатки — передний и задний отделы: через узловую точку в середине хрусталика свет проходит по оптической оси без преломления, не искажаясь.

Глаз человека имеет эллипсоидную форму, слегка вытянут в переднезаднем направлении. Роговица выпуклая с преломляющей силой 43 диоптрии (Д), с большой разницей толщины между центром и периферией, с неглубокой передней камерой (2,7…3,0 мм), с более длинным задним отделом (17 мм), чем передний (6,5…7,0 мм). Узловая точка хрусталика далеко отставлена от сетчатки. В сочетании с небольшим зрачком это обусловливает попадание неяркого света на большую площадь в центре сетчатки, где он улавливается сразу большим количеством фоторецепторов, с малым рассеиванием по периферии. Последнее минимизирует расплывчатость изображения (аберрацию), повышая его четкость. Хрусталик относительно плоский, с небольшой преломляющей силой (19,8 Д), но с большой способностью изменять кривизну. Это позволяет глазу одинаково хорошо воспринимать разноудаленные объекты.

Глаз у собаки имеет форму, близкую к шару. Роговица с незначительной разницей толщины в центре и на периферии имеет изменчивые величины преломления (от 36 до 45 Д, в среднем 40,2 Д) и кривизны (от почти сферической до почти плоской, например у добермана и колли). Глубокая передняя камера (в среднем 4,2 мм), почти равные и небольшие размеры переднего и заднего отделов (7…10 мм) при большом диаметре зрачка (до 6…7 мм) способствуют максимальному проникновению света в глаз [12, 44, 94], что обеспечивает видимость при низкой освещенности. Придвинутость узловой точки к сетчатке и малый объем стекловидного тела (преломляющей среды) способствуют созданию на ней уменьшенного и сильно освещенного изображения. Но при этом свет из маленького центрального участка сетчатки, где он улавливается небольшим числом фоторецепторов, расплывается по всей ее поверхности, снижая четкость изображения.

вернуться

1

Наиболее полно и детально это сделали P. E. Miller, С. J. Murphy (1995) и Е. П. Копенкин и др. (1998).