Теория цветной симметрии развивалась и дальше. Одно из условий, выводимых из нее, гласит, что если пренебречь цветами и все темные тона объединить в один черный, а все светлые — в один белый цвет, то мы сразу получим все известные 46 черно-белых, то есть двухцветных, мозаик.
...Пожалуй, разговор о мозаиках, с которого началась эта глава, увел нас слишком далеко. Впрочем, предощущения грядущих открытий в самых фундаментальных областях знания не так уж необычны для науки. Задолго до первых кристаллографических откровений не кто иной, как Исаак Ньютон, писал: "Нельзя ли предположить, что при образовании кристалла частицы не только становились в строй и в ряды, застывая в правильных фигурах, но также посредством некоторой полярной способности повернули свои одинаковые стороны в одинаковом направлении?" Не правда ли, удивительное провидение? Быть может, спустя всего несколько лет мы с таким же чувством будем перечитывать фразу из статьи Любищева: "Развитие биологии убедило ученых, что есть в природе законы, ограничивающие многообразие форм и регулирующие развитие..."
Кристаллографические элементы организованности, характерные для белков, обещают нам наиболее глубоко проникнуть в тайны управляемых белками жизненных процессов.
VI. Мировая гармония
Рано или поздно всякая правильная математическая идея находила применение в том или ином деле.
"Симметрия... охватывает свойства всех физических полей, с которыми имеют дело физик и химик", — считал академик Владимир Иванович Вернадский. Но если уж речь идет о физике и химике, то что говорить о математике?
Правильные геометрические мозаики, истинные образцы симметрии, как мы имели удовольствие убедиться, двойственны в том смысле, что центры составляющих их фигур служат вершинами для других фигур. И точно так же дело обстоит у правильных многогранников, только их в этом случае называют взаимными. Октаэдр, например, взаимен кубу[7] (20, 21), икосаэдр — додекаэдру (22), а вот тетраэдр взаимен сам себе (23), как квадратная мозаика тоже сама себе двойственна (19). Об этом говорит и симметрия символов Шлефли — {4,3} и {3,4} у куба и октаэдра, {3,5} и {5,3} — у икосаэдра и додекаэдра, {3,3} — у тетраэдра и {4,4} — у квадратной мозаики. Именно поэтому родственные мозаики и многогранники изящнейшим образом вписываются друг в друга.
Но вот что настораживает. Два тетраэдра, прошедших один сквозь другой, образуют восьмигранник — вы увидите его в правом верхнем углу гравюры Маурица Эсхера "Звезды"[8]. Эта фигура встретится нам в виде гравюры "Двойной планетоид". Лука Пачоли, первым обнаруживший эту фигуру, назвал ее "продолженным октаэдром", а его великий друг Леонардо да Винчи сделал соответствующий деревянный каркас, перерисовав его затем в их общую книгу "О божественной пропорции". "Octacedron elevatus solidus", то есть "продолженный октаэдр сплошной", — написано там его рукой (24). Иоганн Кеплер переоткрыл эту фигуру сто лет спустя и присвоил ей имя "стелла октангула" — "восьмиугольная звезда". Она встречается и в природе: это так называемый двойной кристалл. Но она же перечеркивает все, что было сказано до сих пор! Мы вынуждены признать "стеллу октангулу" правильным многогранником: ведь все ее грани — правильные треугольники одинакового размера и все углы между ними равны!
Что же это — шестое платоново тело?! Нет, просто удавшаяся провокация. В определении правильного многогранника сознательно — в расчете на кажущуюся очевидность — не было расшифровано слово "выпуклый". А оно означает дополнительное требование: "и все грани которого лежат по одну сторону от плоскости, проходящей через любую из них". Если же отказаться от такого ограничения, то к Платоновым телам, кроме "продолженного октаэдра", придется добавить еще четыре многогранника (их называют телами Кеплера-Пуансо), каждый из которых будет "почти правильным". Все они получаются "озвездыванием" Платонова тела, то есть продлением его граней до пересечения друг с другом, и потому называются звездчатыми. Куб и тетраэдр не порождают новых фигур — грани их, сколько ни продолжай, не пересекаются. Если же продлить все грани октаэдра до пересечения их друг с другом, то получится та же знакомая нам фигура, что возникает при взаимопроникновении двух тетраэдров — "стелла октангула", которую совсем недаром Лука Пачоли называл "продолженным октаэдром". Икосаэдр и додекаэдр дарят миру сразу четыре "почти правильных многогранника. Один из них — малый звездчатый додекаэдр (25), полученный впервые Иоганном Кеплером, вы видите на эсхеровских гравюрах "Силы гравитации" и "Порядок и хаос".
7
"Среди правильных тел самое первое, начало и родитель остальных — куб, а его, если позволительно так сказать, супруга — октаэдр, ибо у октаэдра столько углов, сколько у куба граней, а центры граней куба соответствуют вершинам октаэдра", — писал Кеплер. Это видно и на гравюре Эсхера "Кристалл".
8
На этой же гравюре внимательный глаз различит и все правильные многогранники. В частности, нижний хамелеон держится nej редкими лапами за октаэдр и тетраэдр, а хвостом обвил другой октаэдр. Верхняя же тварь, наоборот, обвила хвостом ребро тетраэдра, а лапами вцепилась в два октаэдра.