Проблема состояла в том, что уравнения Эйнштейна описывали динамичное пространство-время, которое просто не могло находиться в состоянии покоя. Чтобы исправить этот недочёт, Эйнштейн предположил, что пустое пространство содержит энергию, искривляющую его вне зависимости от присутствия материи. Это искривление, которое он назвал космологической постоянной, представляет собой постоянную отталкивающую силу пустого пространства. Несмотря на то что все тела во Вселенной влияют друг на друга с силой притяжения, отталкивающая сила её нивелирует. И вуаля — мы получаем статичную Вселенную.
В 1930 году главный последователь Эйнштейна, физик Артур Эддингтон, продемонстрировал, что эта гипотеза неверна. Она была нестабильна, словно карандаш, стоящий вертикально. Одно легчайшее движение — и всё обрушится. Вселенная, которую описывал Эйнштейн, балансировала на грани между расширением и коллапсом, и любой толчок мог её опрокинуть.
Но хотя Эйнштейн и упустил суть своих уравнений, говорящих о том, что Вселенная должна находиться в движении, от некоторых его коллег она не укрылась. Чтобы упростить уравнения и сделать их пригодными для решения, Эйнштейну пришлось предположить, что плотность материи во Вселенной всегда остаётся неизменной. Но в тот же год, когда он опубликовал это предположение, Виллем де Ситтер, голландский учёный, читавший ещё первые, контрабандой вывезенные из страны экземпляры работ Эйнштейна, попробовал применить теорию относительности ко всей Вселенной самостоятельно. В отличие от Эйнштейна он не настаивал на неизменной плотности материи и старался смотреть на получившиеся результаты более открыто. Де Ситтер выявил, что Вселенная, в которой действует теория Эйнштейна, должна расширяться. Если поместить в такую Вселенную две частицы, то из-за расширения расстояние между ними будет медленно увеличиваться.
Проблема со Вселенной де Ситтера состояла в том, что она была пустой. В ней не было ничего, кроме расширяющегося пространства-времени. Соответственно, его теория не описывала реальную Вселенную, в которой мы живём (но зато показывала, какого джинна выпустил из бутылки Эйнштейн: пространство-время оказалось динамичным и существующим независимо от материи).
Но в 1922 году российский математик Александр Фридман открыл целый класс Вселенных, допускаемых теорией Эйнштейна. Некоторые из них расширялись, некоторые сжимались, и все содержали материю. Ещё через пять лет «развивающиеся» Вселенные Фридмана были повторно обнаружены католическим священником из Бельгии по имени Жорж Леметр. Сегодня большинство людей знает Вселенные Фридмана–Леметра под их более простым названием — Вселенные Большого взрыва.[206]
Разумеется, существование таких Вселенных было известно учёным лишь теоретически. Но в 1920-х годах ситуация изменилась благодаря американскому астроному по имени Эдвин Хаббл. Для начала он открыл галактики.
Эйнштейну и его коллегам мешало то, что они не знали, из чего состоит Вселенная. В начале XX века уже было известно, что Солнце относится к огромному скоплению звёзд, называемому Млечным Путём. Кроме того, по всему космосу были разбросаны мириады других «спиральных туманностей». Вопрос был лишь в том, что они собой представляют: облака светящегося газа, входящие в Млечный Путь, или другие скопления звёзд, находящиеся так далеко от нашей Галактики, что их сияние сливается воедино?
В 1923 году Хаббл сумел ответить на этот вопрос с помощью 100-дюймового[207] телескопа Хокера, самого большого из подобных аппаратов на Земле, установленного в обсерватории Маунт-Вилсон в Южной Калифорнии. Хаббл направил его на туманность Андромеды и сумел не просто рассмотреть отдельные звёзды, но и выделить из них звёзды особого типа — их свет становился то ярче, то слабее, помогая определить расстояние до них. Эти звёзды, названные цефеидами, убедительно доказали, что туманность Андромеды (а значит, и все прочие спиральные туманности) находится на огромном расстоянии от Млечного Пути.[208]
Так Хаббл открыл, что базовыми элементами Вселенной являются галактики. Наш Млечный Путь, насчитывающий 100 миллиардов звёзд, — это всего лишь одна галактика из примерно двух триллионов.[209]
Затем Хаббл решил измерить скорость движения галактик, продолжив труд ещё одного сотрудника обсерватории Маунт-Вилсон Милтона Хьюмасона.[210] К 1929 году Хаббл провёл достаточно измерений, чтобы заявить о необычном открытии. Почти все галактики не приближались к Млечному Пути, а удалялись от него. При этом, чем дальше от нашей Галактики они находились, тем быстрее двигались. Хаббл понял, что Вселенная расширяется. Удивительно, но гипотеза о Большом взрыве, выдвинутая Фридманом и Леметром на основании теории гравитации Эйнштейна, описывала реальные события.
206
Термин «Большой взрыв» был впервые использован британским астрофизиком Фредом Хойлом во время радиопередачи на BBC в 1949 году. Интересно, что Хойл был одним из создателей альтернативной гипотезы (теории стационарной Вселенной) и сам в Большой взрыв не верил.
208
В 1908 году Генриетта Левитт открыла одно свойство цефеид: чем больше период их пульсации, тем выше их собственная светимость. Соответственно, светимость цефеиды всегда можно вычислить по периоду её пульсации. Зная, насколько яркой она должна выглядеть с Земли и в каком виде наблюдается на самом деле, астрономы могут рассчитать расстояние до неё.
209
«Космос большой. Очень большой. Даже представить себе невозможно, какой он большой, огромный, колоссальный, сокрушительно-исполински-великанский». Дуглас Адамс, «Автостопом по Галактике», глава 8.
210
Частота (или высота) звука полицейской сирены повышается, если полицейская машина приближается к вам, и понижается, когда она начинает удаляться. Точно так же и частота света, излучаемого атомами в звезде, может становиться выше или ниже в зависимости от того, движется эта звезда по направлению к Земле или от неё. Измерив величину этого «доплеровского смещения» для атомов распространённых элементов, таких как водород, астрономы могут определить скорость движения звезды.