Выбрать главу

«Большинство теорий содержат информацию о собственной гибели: электромагнетизм говорит об ультрафиолетовой катастрофе, общая теория относительности — о сингулярностях. Но у квантовой теории, кажется, нет ахиллесовой пяты, — говорит Берман. — Она представляет собой нечто очень глубокое».

Несмотря на то что на сегодняшний день квантовая теория соответствует целевому назначению, то есть точно предсказывает результаты всех экспериментов, она предполагает существование неких вселенских часов, отмеряющих время. «Однако если вблизи сингулярностей время начинает идти по-другому, непонятно, как мы можем применять квантовую теорию. В области космологии, то есть происхождения, эволюции и будущего конца Вселенной, квантовая теория может иметь проблемы», — говорит Аркани-Хамед.

«Новая теория будет представлять собой не общую теорию относительности и не квантовую теорию, а нечто третье», — утверждает Ли Смолин из института «Периметр» в Уотерлу, Канада.

Учёным сложно сделать следующий шаг, потому что для этого нужно свести воедино все фрагментарные теории и результаты экспериментов с разными моделями реальности. Вот только никто не знает, какие из них верны. Возможно, вообще никакие. «Теория струн — это часть более глубокой теории, — говорит Аркани-Хамед, — но, кто знает, может быть, даже не самая важная».

Вверх — это новое вниз

Когда Аркани-Хамед предложил для получения новой теории подтолкнуть физическую науку к обрыву, а затем сделать с него шаг в неизвестность, он предполагал, что мы имеем все необходимые эмпирические данные для получения ответов на свои вопросы. На данный момент нам известно о существовании 12 строительных блоков материи (шести кварков и шести лептонов) и о четырёх фундаментальных взаимодействиях. Но хорошо изученная нами атомная материя, из которой состоят звёзды, галактики и мы сами, составляет примерно 1/6 массы загадочной тёмной материи. «Тёмная материя может оказаться критически важной. Она может изменить всё наше понимание о Вселенной и опровергнуть теорию струн», — говорит Аркани-Хамед.

Нельзя исключать, что в мире существуют тёмные частицы и тёмные силы, которые могут полностью перевернуть наши представления о физике. Как говорил шекспировский Гамлет, «есть многое в природе, друг Горацио, что и не снилось нашим мудрецам».

Поразительно, что обычная материя, состоящая из частиц, предусмотренных Стандартной моделью, составляет всего 4,9% всей массы-энергии Вселенной, да и из неё мы сумели увидеть в свои телескопы лишь половину. Предполагается, что вторая половина приходится на водородные облака, плавающие между галактиками. Такие облака должны быть слишком холодны или слишком горячи, чтобы испускать регистрируемое свечение.[277] Для сравнения: на долю тёмной материи приходится около 26,8% массы-энергии Вселенной, а на тёмную энергию — 68,3%.

Как уже говорилось выше, тёмная энергия (несмотря на то что она является основной составляющей Вселенной) была открыта лишь в 1998 году. Она невидима, заполняет собой весь космос и имеет отталкивающую гравитацию. Именно она и ускоряет расширение Вселенной, которое привело к её открытию.[278]

Если в школах детей ещё учат называть гравитацию силой притяжения, значит, эти школы отстали от жизни. Более двух третей всего сущего во Вселенной имеет гравитацию, которая не притягивает, а отталкивает. «Мы знаем, что гравитация существует, потому что яблоки падают с деревьев вниз. Мы можем наблюдать её действие в окружающем мире, — замечает исследователь тёмной материи Адам Рисс из Университета Джона Хопкинса в Балтиморе. — Но если бы мы швырнули яблоко к краю Вселенной, мы бы увидели, что оно ускоряется».

Скорее всего, тёмная энергия не сможет вставить физике такие же большие палки в колёса, как тёмная материя, потому что и общая теория относительности, и квантовая теория предсказывают существование вакуумной энергии (пускай никто и не понимает, как эти предсказания сочетаются друг с другом).[279]

Итак, нам не хватает множества эмпирических сведений о Вселенной. Может быть, есть необходимость и в новой масштабной идее? «Наша система поразительно верна во многих аспектах, — отмечает Аркани-Хамед. — Но очевидно также, что мы ошибаемся в чём-то важном. Следующий шаг потребует от нас революционных мыслей». Как однажды сказал Джон Уилер, «за всем этим наверняка стоит настолько простая и прекрасная идея, что, когда мы поймём её, пускай через десять, сто или тысячу лет, мы спросим у себя: разве могло быть иначе?».

вернуться

277

Свет выделяется, когда электрон в атоме перемещается с высокоэнергетической орбиты на низкоэнергетическую. Атомы водорода, имеющие по одному электрону, не выделяют свет при очень низких температурах, когда электроны находятся на самых низкоэнергетических орбитах, или, наоборот, при максимальных температурах, когда атомы разогреваются настолько, что лишаются электронов.

вернуться

278

Отталкивающая гравитация возникает потому, что в соответствии с общей теорией относительности источником гравитации является удельная энергия (u) + 3 × (P) (давление). Давлением атомов материи по сравнению с её удельной энергией можно пренебречь. Но есть случаи, в которых это правило не работает. Речь идёт о тёмной энергии. Для неё давление не просто имеет отрицательное значение, но и составляет менее −1/3u. Таким образом, знак источника гравитации меняется на противоположный, превращая её значение из положительного в отрицательное. Именно отталкивающая гравитация ускоряет расширение Вселенной. Тёмная энергия присутствует во всех сжимающихся пространствах и лишь в рамках общей теории относительности проявляет себя как отталкивающая гравитация.

вернуться

279

Согласно общей теории относительности пустое пространство имеет внутреннее искривление, или энергию, известную как космологическая постоянная. Ноль — это нечасто встречающееся значение, и потому космологи не были особо удивлены, когда выяснили, что космологическая константа не равна ему. Однако их заинтересовало, что она оказалась слишком мала. Если верить квантовой теории, из-за квантовых флуктуаций вакуум должен содержать энергию. Но в соответствии с её предсказаниями удельная энергия вакуума (то есть величина тёмной энергии) должна быть в 10120 (1 с 120 нулями) раз больше, чем наблюдается на самом деле. Это самое большое несоответствие между прогнозом и реальным положением дел в истории науки! Данное значение можно было бы свести к наблюдаемому, если бы энергия вакуума дополнялась из ещё одного источника, имеющего отрицательное значение. Это сложная задача, но с ней может справиться суперсимметрия, так как флуктуации бозонных полей обладают положительной энергией, а фермионных — отрицательной.