Выбрать главу

Сам собой вытекает из всего предыдущего анализа и порядок нашего дальнейшего исследования. Именно, 1) если есть сфера внешнего инобытия числа и сфера внутреннего его инобытия, то диалектика требует, чтобы была и третья сфера, объединяющая обе первые, сфера, где уже нельзя было бы разъединить внешнее от внутреннего и где обе эти категории слились в одну до полной неразличимости. Далее, если [есть] такая'новая сфера чисел, то диалектика требует, чтобы и она имела триади–ческое строение; и, следовательно, необходимо нам найти по крайней мере три типа этих синтетических чисел, сливающих в себе свойства первых двух триад и находящихся во взаимном диалектическом отношении. И наконец, 3) необходимо, чтобы эти три категории числа не только между собою находились в диалектическом взаимоотношении, но чтобы каждая из этих категорий была синтезом для соответствующей пары первых двух триад. Стало быть, если первые три категории обозначить через Ι.ίΙ.ΙΙΙ, вторые — через IV.V.VI, а третьи — через VII.VIII.IX, то VII, являясь тезисом третьей триады, должна быть синтезом для I и IV; VIII, являясь антитезисом третьей триады, должна быть синтезом II и V; и IX, являясь синтезом третьей триады, должна быть и синтезом для III и VI. Только при таком всестороннем диалектическом взаимоотношении этих девяти типов числа можно говорить, что эти типы даны у нас действительно диалектически и что они на самом деле суть диалектические категории какого–то одного и единственного числового всеединства.

Наметивши этот порядок дальнейшего исследования, перейдем к характеристике трех остающихся категорий, или типов, числа.

2. Задание мыслить первую из этих категорий совершенно ясно: она должна совместить «положительность» и «целость», или, говоря более отвлеченно, но, кажется, более понятно, — совместить утверждение числа как некоего факта и утверждение числа как некоего внутреннего содержания. Тут должно повториться явление, общее всякому диалектическому переходу от внутреннего к внешнему. Вспомним это обычное в общей диалектике смысловое обстояние. Если совершается переход от внутреннего к внешнему (или обратно) и обретается категория, в которой внутреннее и внешнее тождественны, то прежде всего внешнее оказывается не только явлением внутреннего, но и проявлением внутреннего. Все, что есть внутри данной сферы, оказывается уже и вне этой сферы, на ней, на ее поверхности; а все, что на поверхности, оказывается внутри. Оказывается, что внутреннее содержание числа или вещи может быть извлечено из их недр на внешнюю поверхность путем некоторых планомерных операций и это извлечение дает вполне адекватное соответствие обеих сфер, внутренней и внешней. В применении к числу удобнее и яснее будет, если мы употребим термин «соизмеримость» вместо более отвлеченного и более пустого — «соответствие», или «проявление». Именно, внутреннее содержание числа и его внешняя утвержденность в случае их синтеза оказываются взаимно соизмеримыми. То, что внутри, может здесь измеряться чисто внешними мерами, и это измерение осуществляется вполне точно и адекватно. То, что внутри, можно получить при помощи определенных и четких действий; и то, что вне, есть не что иное, как только так или иначе измеренное внутреннее.

Число, представляющее собою тождество своего внутреннего и внешнего содержания, есть рациональное число. Всмотримся ближе в эту новую категорию.

3. Что в математике мы именуем рациона л ьньш числом? В основном понятие рационального сходится здесь почти точно с обычным общефилософским и .ц&же обыденным пониманием этого термина. Когда мь| говорим о «рационализме», о «рациональном доказательстве», о «рациональном обосновании», мы имеем в виду полную взаимную приспособленность и соответствие между «[ratio]», т. е. рассудком (или разумом), и тем, что берется как предмет этого «[ratio]», соответствие между «идеями» и «вещами». Известна формула старого рационализма, коротко выражающая его сущность: «Порядок и связь [вещей]—те же, что порядок и связь идей». С точки зрения подобного учения, «идеи»[169] вполне точно и правильно, вполне адекватно выражают сущность вещей, бытия; внутреннее содержание вещей вполне выразимо в идеях, идеи и вещи абсолютно соизмеримы между собою. В понятие рационального мы здесь вкладываем, следовательно, прежде всего указание на рассудочную соизмеримость, чисто логическую измеренность бытия. Мыслятся два плана бытия, измеряемый вещественный и измеряющий рассудочный, и требуется, чтобы оба они выражали друг друга, чтобы получалось действительно измерение, и притом абсолютно точное. То же самое понятие рациональности имеется в виду, когда говорят в математике о рациональном числе.

вернуться

169

В рукописи: идей.