Выбрать главу

Этот перво–принцип и эта внутренняя закономерность иррациональности есть предел, вернее, то, что в математике называется пределом.

2. Эта фундаментальнейшая категория всей математики требует четкого разъяснения, и тут диалектика должна показать всю свою силу и основательность. Иррациональность имеет свой первоисток в пределе. Предел — внутренний исходный перво–принцип иррациональности. Чтобы усвоить это учение об иррациональности, надо произвести ряд отграничений.

а) Предел не есть просто голая и абстрактная идея числа, изолированно пребывающая сама в себе. Если взять ряд, члены которого образованы по типу

<un=1-> т.е., полагая [n] = 1, 2, 3…, взять ряд и т. д., то на основе

<...> = 1 — легко видеть, что пределом этого ряда является <…>[182].

1. Равным образом, если взять ряд[183]

<un = 1 —

то при возрастании η до бесконечности мы получаем в качестве предела 0. Эта единица и этот нуль, являющийся пределами двух последовательностей, сами по себе взятые, отнюдь не есть пределы. Смысл единицы есть просто единица, и ни о каком пределе тут нет ровно никакой речи. Так же и относительно нуля. Пределом 0, 1 и всякое другое число становится не само по себе, не в силу своей чисто абстрактной значимости, но исключительно лишь в силу того, что оно является некоей притягивающей силой для других величин, т. е. в силу того, что оно перестает быть изолированным и голым числом, но заряжается некоей числовой заданностью и как бы издали привлекает к себе целую бесконечность определенным образом расположенных величин. Так, в первом примере единица, являясь пределом последовательности, тянет к себе эту последовательность, притягивает к себе наподобие некоего магнита целую массу каких–то своеобразных математических точек. И об этом мы знаем не просто из числового значения единицы (не имеющего, понятно, никакого отношения к последовательности или пределу), но из характера той смысловой сферы, в которую погружена эта единица. Значит, в определение предела мы обязаны внести момент закономерности протекания последовательности, постепенно осуществляемой по мере дальнейшего распространения этого протекания. Предел есть всегда та или иная размерность, расположенность и упорядоченность процесса, динамический смысл и закономерность построения последовательности. Предел не есть просто ординарное голое число или величина, но он есть смысловой первоисток числового становления. Отсюда начинает становиться понятным, что предел есть в некотором роде иррациональность, рассмотренная как иррациональность же, т. е. он есть иррациональное становление—с точки зрения не просто своего протекания и текучести, но с точки зрения смысловой закономерности этого становления. Это есть сомкнутая и неразвернутая закономерность числового становления, смысловая заряженность этого становления, методический его пер–во–принцип — и чистая возможность.

вернуться

182

В рукописи: пропуск, из содержания можно предположить, что речь идет о «единице».

вернуться

183

Если предыдущий ряд реконструируется однозначно, то ниже дается лишь один из возможных рядов с пределом О.